Взаимосвязь напряжения текучести с твердостью и пределом прочности

Диаграмма деформации

показывает зависимость изменения длины образца при постепенном возрастании величины прилагаемого усилия (рис. 21).

В первый момент испытания длина образца увеличивается пропорционально нагрузке — чем больше растягивающее усилие, тем больше увеличение длины.

При этом образец деформируется упруго, т. е. при устранении нагрузки образец примет свою первоначальную длину. Такая деформация носит название упругой деформации.

При достижении нагрузкиPs

в металле возникает заметная
пластическая деформация
— сдвиги слоев металла относительно друг друга, и при устранении нагрузки образец не принимает своей первоначальной длины.

Нагрузка, отвечающая этому моментуPs,

называется
нагрузкой предела текучести.

Предел текучести металла

Отношение этой нагрузки к площади поперечного сечения называютпределом текучести.

гдеF

— первоначальная площадь поперечного сечения образца в мм 2 .

Как видно из формулы, предел текучести измеряется в кг/мм
2.
Величины, выраженные в таких единицах, называют напряжением.

Таким образом, пределом текучести

называют напряжение, при котором начинает развиваться заметная пластическая деформация.

При дальнейшем увеличении нагрузки за пределом текучести прямолинейной зависимости между нагрузкой и длиной образца уже нет. Наконец наступает такой момент, когда нагрузка начинает падать, а в образце намечается образование сужения поперечного сечения (образование шейки).

Предел прочности металла

Максимальную нагрузку, которую выдержал образец, называют нагрузкой предела прочности,

а напряжение, отвечающее этой максимальной нагрузке, —
пределом прочности.

Таким образом, пределом прочности

называют максимальное напряжение, выдержанное образцом.

Дальнейшее растяжение образца сопровождается образованием все более сужающейся шейки и падением нагрузки. Вслед за этим наступает разрушение

образца.

Источник: www.conatem.ru

Предел прочности материалов (разрыв металлов) при растяжении и сжатии: что это такое, виды, фото

При строительстве объектов обязательно необходимо использовать расчеты, включающие подробные характеристики стройматериалов. В обратном случае на опору может быть возложена слишком большая, непосильная нагрузка, из-за чего произойдет разрушения. Сегодня поговорим о пределе прочности материала при разрыве и натяжении, расскажем, что это такое и как работать с этим показанием.

Формула удельной прочности

R с индексом «у» – обозначение данного параметра в физике. Рассчитывается как ПП (в записи – R) поделенное на плотность – d. То есть этот расчет имеет практическую ценность и учитывает теоретические знания о свойствах стали для применения в жизни. Инженеры могут сказать, как меняется временное сопротивление в зависимости от массы, объема изделия. Логично, что чем тоньше лист, тем легче его деформировать.

Формула выглядит так:

Ry = R/d

Здесь будет логичным объяснить, в чем измеряется удельный предел прочности. В Н/мм2 – это вытекает из предложенного алгоритма вычисления.

Определение термина

ПП – будем использовать это сокращение, а также можно говорить об официальном сочетании «временное сопротивление» – это максимальная механическая сила, которая может быть применена к объекту до начала его разрушения. В данном случае мы не говорим о химическом воздействии, но подразумеваем, что нагревание, неблагоприятные климатические условия, определенная среда могут либо улучшать свойства металла (а также дерева, пластмассы), либо ухудшать.

Ни один инженер не использует при проектировании крайние значения, потому что необходимо оставить допустимую погрешность – на окружающие факторы, на длительность эксплуатации. Рассказали, что называется пределом прочности, теперь перейдем к особенностям определения.

Определение термина

Изначально особенных мероприятий не было. Люди брали предмет, использовали его, а как только он ломался, анализировали поломку и снижали нагрузку на аналогичное изделие. Теперь процедура гораздо сложнее, однако, до настоящего времени самый объективный способ узнать ПП – эмпирический путь, то есть опыты и эксперименты.

Все испытания проходят в специальных условиях с большим количеством точной техники, которая фиксирует состояние, характеристики подопытного материала. Обычно он закреплен и испытывает различные воздействия – растяжение, сжатие. Их оказывают инструменты с высокой точностью – отмечается каждая тысячная ньютона из прикладываемой силы. Одновременно с этим фиксируется каждая деформация, когда она происходит. Еще один метод не лабораторный, а вычислительный. Но обычно математический анализ используется вместе с испытаниями.

Определение термина

Образец растягивается на испытательной машине. При этом сначала он удлиняется в размере, а поперечное сечение становится уже, а затем образуется шейка – место, где самый тонкий диаметр, именно здесь заготовка разорвется. Это актуально для вязких сплавов, в то время как хрупкие, к ним относится чугун и твердая сталь, растягиваются совсем незначительно без образования шейки. Подробнее посмотрим на видео:

Временное сопротивление разрыву определяют по различным воздействиям, согласно этому его классифицируют по:

  • сжатию – на образец действуют механические силы давления;
  • изгибу – деталь сгибают в различные стороны;
  • кручению – проверяется пригодность для использования в качестве крутящегося вала;
  • растяжению – подробный пример проверки мы привели выше.

Временное сопротивление

Временное сопротивление при комнатной температуре в результате длительной эксплуатации при высокой температуре изменяется двояким образом. При высоких значениях в исходном состоянии оно сильно снижается в эксплуатации; при значениях, близких к нижнему пределу по техническим условиям, временное сопротивление практически не изменяется. [1]
Временное сопротивление разрыву должно быть не ниже минимально допустимого предела для временного сопротивления разрыву основного металла по ГОСТ или техническим условиям на соответствующие полуфабрикаты ( ленты, трубы и др.) из сталей данной марки. [2]

Временное сопротивление и предел прочности при изгибе уменьшаются вследствие увеличения хрупкости металлической основы и наличия в образцах больших внутренних напряжений, вызванных закалкой. В таком состоянии малоуглеродистый чугун, как и другие чугуны с пластинчатой формой графита, после закалки имеет невысокую эрозионную стойкость. Это объясняется перенапряженностью отдельных микроучастков, особенно в местах скопления графитовых включений, где концентрируются большие напряжения. В этом случае металлическая основа чугуна разрушается быстро без инкубационного периода. [3]

Временное сопротивление растяжению должно быть не ниже 20 кг / еж2 через 2 дня. [4]

Временное сопротивление ( а) характеризует максимальное напряжение, предшествующее разрушению образца. Различают напряжения условные и истинные. Условным напряжением называют отношение величины нагрузки к исходному сечению образца; истинным – к сечению, которое образец приобрел к моменту достижения данной нагрузки. Диаграммы растяжения пластичных металлов с условными напряжениями отличаются от диаграмм с истинными напряжениями. [5]

Временное сопротивление ( предел прочности при растяжении) 0В ( впч, 0в, 0н), кгс / мм2 – напряжение, соответствующее наибольшей нагрузке, которая предшествует разрушению образца, и отнесенное к начальной площади ( F0) его поперечного сечения до испытания. [6]

Временное сопротивление скалыванию по склейке в сухом состоянии определяют на образцах, изображенных на фиг. [7]

Временное сопротивление скалыванию у клеевого соединения должно удовлетворять требованиям технических условий На клей. [8]

Временное сопротивление при изгибе существенно зависит от качества подготовки поверхности образцов. [9]

Временное сопротивление и относительное удлинение после разрыва определяют в соответствии с нормативно-технической документацией. [10]

Временное сопротивление разрыву и относительное удлинение соответствуют указанным, вгтабл. [11]

Временное сопротивление разрыву металла сварных швов при 20 С должно соответствовать значениям, установленным в нормативно-технической документации на основной металл. [12]

Временное сопротивление разрыву определяют для лент толщиной 0 3 мм и более, относительное удлинение – для лент толщиной 0 5 мм и более. [14]

Временное сопротивление возрастает с увеличением содержания олова. При высокой концентрации олова вследствие присутствия в структуре значительного количества эвтектоида, содержащего хрупкое соединение Cu31Sn8, временное сопротивление резко снижается. Относительное удлинение несколько возрастает при содержании в бронзе 4 – 6 % Sn, но при образовании эвтектоида – сильно падает. Оловянные бронзы обычно легируют Zn, Fe, P, Pb, Ni и другими элементами. Цинк улучшает технологические свойства бронзы и удешевляет бронзу. Он улучшает литейные свойства, повышает твердость, прочность, износостойкость, упругие и антифрикционные свойства. Никель повышает механические свойства, коррозионную стойкость и плотность отливок и уменьшает ликвацию. Железо измельчает зерно, но ухудшает технологические свойства бронз и сопротивляемость коррозии. [15]

Механические свойства

характеризуют способность матери­ала сопротивляться внешним механическим воздействиям. К основным механическим свойствам относятся прочность, пла­стичность, твердость, ударная вязкость и др.

Основные характеристики механических свойств сплавов цветных металлов:

Для стальных и железобетонных конструкций применяются углеродистые и низколегированные стали повышенной и высокой прочности. Стали для конструкций классифицируются по способу выплавки, технологии раскисления, химическому составу, способу упрочнения, качеству и назначению, а также по прочности.

По способу выплавки стали делятся на мартеновские, кислородно-конверторные и бессемеровские; по технологии раскисления – на спокойные, полуспокойные и кипящие (в том числе закупоренные кипящие); по способу упрочнения – на холоднодеформированные и термически обработанные (термоупрочненные).

Сталь по назначению подразделяется: на сталь общего назначения – углеродистая горячекатаная обыкновенного качества и сталь разных назначений – углеродистая горячекатаная повышенного качества (низколегированная) и высокой прочности.

Установлены следующие классы прочности стали (по значениям временного сопротивления и предела текучести): С 38/23, С 44/30, С 46/34, С 52/40, С 60/45, С 70/60.

Предел пропорциональности σпц – напряжение, при котором отступление от линейной зависимости между напряжениями и удлинениями достигает некоторой устанавливаемой техническими условиями или стандартом величины (например, уменьшения тангенса угла наклона касательной к диаграмме растяжения по отношению к оси деформаций на 20 или 33% своего первоначального значения).

Предел упругости σуп – напряжение, при котором остаточные удлинения достигают некоторой малой величины, устанавливаемой техническими условиями или стандартом (например, 0,001; 0,01% и т. д.). Иногда предел упругости обозначается соответственно допуску σ0,001; σ0,01 и т. д.

Читать также: Как заточить победитовый диск для циркулярки

Предел текучести σт для материалов, имеющих площадку текучести (малоуглеродистая сталь), определяется как напряжение, соответствующее нижней точке площадки текучести; для материалов, не имеющих площадки текучести, определяется условный предел текучести σ0,2 – напряжение, при котором остаточное удлинение образца достигает 0,2%.

Временное сопротивление (предел прочности) σв – напряжение, равное отношению наибольшей нагрузки, предшествовавшей разрушению образца, к первоначальной площади сечения образца. Временное сопротивление можно отождествлять с пределом прочности только для хрупких материалов, разрушающихся без образования шейки. Для пластичных материалов это характеристика своеобразной потери устойчивости при растяжении, т. е. характеристика сопротивления значительным пластическим деформациям.

Относительное удлинение при разрыве δ – отношение (обычно в %) приращения расчетной длины образца после разрыва к ее исходной величине. Для длинного круглого образца (lрасч=10d) – δ10; для короткого образца (lрасч=5d) – δ5.

Относительное сужение при разрыве ψ – отношение уменьшения площади наименьшего поперечного сечения образца (после разрыва) к исходной площади поперечного сечения образца.

Условный предел текучести при изгибе σт.и – нормальное напряжение, вычисленное условно по формулам для упругого изгиба, при котором остаточное удлинение наиболее напряженного крайнего волокна достигает 0,2% или другой величины того же порядка соответственно требованиям технических условий.

Временное сопротивление (предел прочности) при изгибе σв.и – нормальное напряжение, вычисленное условно по формулам для упругого изгиба и соответствующее наибольшей нагрузке, предшествовавшей излому образца.

Условный предел текучести при кручении τ0,2, τт – касательное напряжение, вычисленное условно по формулам для упругого кручения, при котором остаточные деформации удлинения или сдвига по поверхности образца достигают 0,2% или другой величины того же порядка соответственно требованиям технических условий.

Временное сопротивление (предел прочности) при кручении τв – касательное напряжение, вычисленное условно по формулам для упругого кручения и соответствующее наибольшему скручивающему моменту, предшествовавшему разрушению образца.

Твердость по Бринеллю НВ – твердость материала, определяемая путем вдавливания в него стального шарика и вычисляемая как частное от деления нагрузки на поверхность полученного отпечатка. Для некоторых материалов существует приблизительно прямая пропорциональность между твердостью НВ и временным сопротивлением; например, для углеродистых сталей σв ≈ 0,36 НВ.

Твердость по Роквеллу HRC, HRB – твердость материала, определяемая путем вдавливания стального шарика или алмазного конуса стандартных размеров и измеряемая в условных единицах с помощью разных шкал по приращению оставшейся глубины погружения при переходе от малого стандартного груза к большому.

Твердость по Виккерсу HV – твердость материала, определяемая путем вдавливания алмазной четырехгранной пирамиды стандартных размеров и вычисляемая как частное от деления стандартной нагрузки на боковую поверхность полученного отпечатка.

Предел ползучести (условный) – длительно действующее напряжение, при котором скорость или деформация ползучести за определенный промежуток Бремени при данной температуре не превышает величины, установленной техническими условиями.

Предел длительной прочности – напряжение, вызывающее разрушение образца после заданного срока его непрерывного действия при определенной температуре.

Предел выносливости – наибольшее периодически изменяющееся напряжение, которое может выдержать материал без разрушения при большом числе циклов, заданном техническими условиями (например, 10 6 ; 10 7 ; 10 8 ). Обозначается при симметричном цикле σ-1 (изгиб), σ-1p (растяжение-сжатие), τ-1 (кручение), при пульсирующем цикле (напряжения меняются от нуля до максимума) соответственно σ, σ0p и τ.

Ударная вязкость ak – работа, затраченная на разрушение образца при ударном изгибе, отнесенная к рабочему поперечному сечению образца.

Упругое последействие: прямое – постепенное увеличение деформации после быстрого прекращения роста нагрузки; обратное – сохранение или медленное уменьшение деформации после быстрого снятия нагрузки или остановки разгрузки.

Наклеп – упрочнение металла, происходящее благодаря пластической деформации при процессах холодной обработки (холодной прокатке, вытяжке, волочении).

Старение (механическое) – самопроизвольное длительное изменение механических свойств стали после наклепа, вызванное фазовыми превращениями. Различают естественное старение, протекающее при комнатной температуре, и искусственное старение – при повышенных температурах.

Разрушение стали возможно вязкое (пластичное) – от сдвига, хрупкое – от отрыва. В обоих случаях разрушение состоит в нарушении целостности, в разрыве. Нарушение сплошности может возникнуть при условии накопления энергии, отвечающей величине поверхностной энергии на поверхностях нарушения целостности, и в соответствии с этим расстояние между атомами должно достичь критических величин, при которых происходит нарушение связи между ними.

Работа разрушения – величина всей площади диаграммы растяжения образца в координатах Р-∆l; упругая работа – площадь упругой части той же диаграммы; удельная работа – работа, приходящаяся на единицу объема рабочей части образца и соответствующая площади диаграммы растяжения в координатах σ-ε.

Удельный вес в расчетах принимают равным для стали 7,85, для чугуна 7,2; удельный вес стали с содержанием 0,1% С – 7,06 (в жидком состоянии).

Читать также: Пропали каналы на спутнике как настроить

Модуль упругости E стали и другие упругие константы практически не зависят от величины зерна, структуры, соотношений между объемами феррита и перлита, от содержания углерода и других легирующих добавок.

Модуль упругости для прокатной стали, литья, горячекатаной арматуры из сталей марок Ст.5 и Ст.3 Е=2,1·10 6 кГ/см 2 ; для сталей 30ХГ2С и 25Г2С E=2·10 6 кГ/см 2 . Для холоднотянутой круглой и периодического профиля проволоки, а также для холодно-сплющенной арматуры E=1,8·10 6 кГ/см 2 .

Для пучков и прядей высокопрочной проволоки (с параллельным расположением проволок) Е=2·106 кГ/см 2 ; для канатов стальных спиральных и канатов (тросов) с металлическим сердечником Е=1,5·10 4 кГ/см 2 ; для тросов с органическим сердечником E=1,3·10 6 кГ/см 2 .

Для отливок из серого чугуна марок СЧ28-48, СЧ24-44, СЧ21-40 и СЧ18-36 E=1·10 6 кГ/см 2 .

Модуль сдвига для прокатной стали G=8,4·10 6 кГ/см 2 .

Коэффициент Пуассона (коэффициент поперечной деформации) μ=0,3.

Методы определения механических свойств металлов разделяют на:

– статические, когда нагрузка растет медленно и плавно (испытания на растяжение, сжатие, изгиб, кручение, твердость);

– динамические, когда нагрузка растет с большой скоростью (испытания на ударный изгиб);

– циклические, когда нагрузка многократно изменяется по величине и направлению (испытания на усталость).

1. Испытание на растяжение

При испытании на растяжение определяют предел прочности

(σв),
предел текучести
(σт),
относительное удлинение
(δ) и
относительное сужение
(ψ). Испытания проводят на разрывных машинах c использованием стандартных образцов с площадью поперечного сечения Fo и рабочей (расчетной) длиной lo. В результате проведения испытаний получают диаграмму растяжения (рис. 1). На оси абсцисс указывается значение деформации, на оси ординат – значение нагрузки, которая прилагается к образцу.

Предел прочности (σв) – это максимальная нагрузка, которую выдерживает материал без разрушения, отнесенная к начальной площади поперечного сечения образца (Pmax/Fo).

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения:
Да какие ж вы математики, если запаролиться нормально не можете.
8256 – | 7223 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock! и обновите страницу (F5)

очень нужно

Предел прочности

– это то же, что и временное сопротивление материала. Но несмотря на то, что правильнее использовать термин
временное сопротивление
, понятие предел прочности лучше прижилось в технической разговорной речи. В то же время в нормативной документации, стандартах применяют термин «временное сопротивление».

Прочность

– это сопротивление материала деформации и разрушению, одно из основных
механических свойств
. Другими словами, прочность – это свойство материалов, не разрушаясь, воспринимать те или иные воздействия (нагрузки, температурные, магнитные и другие поля).

К характеристикам прочности при растяжении

относятся модуль нормальной упругости, предел пропорциональности, предел упругости, предел текучести и временное сопротивление (предел прочности).

Предел прочности

– это максимальное механическое напряжение, выше которого происходит разрушение материала, подвергаемого деформации; предел прочности при растяжении обозначается σВ и измеряется в килограммах силы на квадратный сантиметр (кгс/см 2 ), а также указывается в мегапаскалях (МПа).

Различают:

  • предел прочности при растяжении,
  • предел прочности при сжатии,
  • предел прочности при изгибе,
  • предел прочности при кручении.

Предел кратковременной прочности (МПа)

определяется с помощью испытаний на растяжение, деформацию проводят до разрушения. С помощью испытаний на растяжение определяют временное сопротивление, удлинение, предел упругости и др.. Испытания на длительную прочность предназначены главным образом для оценки возможности использования материалов при высоких температурах (длительная прочность, ползучесть); в результате определяется σB/Zeit – предел ограниченной длительной прочности на заданный срок службы. [1]

Физику прочности

основал Галилей: обобщая свои опыты, он открыл (1638 г.), что при растяжении или сжатии нагрузка разрушения
P
для данного материала зависит только от площади поперечного сечения
F
. Так появилась новая физическая величина – напряжение
σ=P
/
F
– и физическая постоянная материала: напряжение разрушения [4].

Физика разрушения как фундаментальная наука о прочности металлов

возникла в конце 40-х годов XX века [5]; это было продиктовано острой необходимостью разработки научно обоснованных мер для предотвращения участившихся катастрофических разрушений машин и сооружений. Раньше в области прочности и разрушения изделий учитывалась только классическая механика, основанная на постулатах однородного упруго-пластического твёрдого тела, без учёта внутренней структуры металла. Физика разрушения учитывает также атомно-кристаллическое строение решётки металлов, наличие дефектов металлической решётки и законы взаимодействия этих дефектов с элементами внутренней структуры металла: границами зёрен, второй фазой, неметаллическими включениями и др.

Большое влияние на прочность материала

оказывает наличие ПАВ в окружающей среде, способных сильно адсорбироваться (влага, примеси); происходит уменьшение предела прочности.

Читать также: Фен для выпайки микросхем

К повышению прочности металла приводят целенаправленние изменения металлической структуры, в том числе – модифицирование сплава.

Учебный фильм о прочности металлов (СССР, год выпуска:

Предел прочности на растяжение стали

Стальные конструкции давно заменили прочие материалы, так как они обладают отличными эксплуатационными характеристиками – долговечностью, надежностью и безопасностью. В зависимости от применяемой технологии, он подразделяется на марки. От самой обычной с ПП в 300 Мпа, до наиболее твердой с высоким содержанием углерода – 900 Мпа. Это зависит от двух показателей:

  • Какие способы термообработки применялись – отжиг, закалка, криообработка.
  • Какие примеси содержатся в составе. Одни считаются вредными, от них избавляются для чистоты сплава, а вторые добавляют для укрепления.

Типичная прочность на разрыв

Типичная прочность на растяжение некоторых материалов

МатериалПредел текучести (МПа)Предел прочности на растяжение (МПа)Плотность (г / см³)
Сталь конструкционная ASTM Сталь А36250400–5507.8
Сталь 1090 мягкая2478417.58
Хромованадиевая сталь AISI 61506209407.8
Сталь, 2800 Мартенситностареющая сталь[6]261726938.00
Стали, AerMet 340[7]216024307.86
Сталь, каротажный кабель Sandvik Sanicro 36Mo для прецизионной проволоки[8]175820708.00
Сталь, AISI 4130, закалка в воде 855 ° C (1570 ° F), состояние 480 ° C (900 ° F)[9]95111107.85
Сталь, API 5L X65[10]4485317.8
Сталь, высокопрочный сплав ASTM A5146907607.8
Акрил, прозрачный литой лист (PMMA)[11]7287[12]1.16
Полиэтилен высокой плотности (HDPE)26–33370.85
Полипропилен12–4319.7–800.91
Сталь нержавеющая AISI 302 — холоднокатаная520[нужна цитата
]
8608.19
Чугун 4,5% C, ASTM A-481302007.3
«Liquidmetal»сплав[нужна цитата
]
1723550–16006.1
Бериллий[13] 99,9% быть3454481.84
Алюминиевый сплав[14] 2014-T64144832.8
Полиэфирная смола (неармированная)[15]5555
Полиэстер и матовый ламинат 30% E-стекло[15]100100
Эпоксидный композит S-Glass[16]23582358
Алюминиевый сплав 6061-T62413002.7
Медь 99,9% Cu70220[нужна цитата
]
8.92
Мельхиор 10% Ni, 1,6% Fe, 1% Mn, остальное Cu1303508.94
Латунь200 +5008.73
Вольфрам941151019.25
Стекло33[17]2.53
E-GlassНет данных1500 для ламината, 3450 только для волокон2.57
S-стеклоНет данных47102.48
Базальтовое волокно[18]Нет данных48402.7
МраморНет данных152.6
КонкретныйНет данных2–52.7
Углеродное волокноНет данных1600 для ламината, 4137 только для волокон1.75
Углеродное волокно (Toray T1100G)[19] (самые прочные искусственные волокна)Только 7000 волокон1.79
Человеческая прическа140–160200–250[20]
Бамбук350–5000.4
Паучий шелк (см. примечание ниже)10001.3
Паучий шелк Паук из коры Дарвина[21]1652
Шелкопряд шелк5001.3
Арамид (Кевлар или же Twaron)362037571.44
СВМПЭ[22]24520.97
Волокна СВМПЭ[23][24] (Dyneema или Spectra)2300–35000.97
Вектран2850–3340
Полибензоксазол (Зилон)[25]270058001.56
Дерево, сосна (параллельно зерну)40
Кость (конечность)104–1211301.6
Нейлон формованный тип 6/64507501.15
Нейлоновое волокно, вытянутое[26]900[27]1.13
Эпоксидный клей12–30[28]
Резинка16
БорНет данных31002.46
Кремний, монокристаллический (m-Si)Нет данных70002.33
Ультрачистый кремнезем стекловолоконные нити[29]4100
Сапфир (Al2О3)400 при 25 ° C, 275 при 500 ° C, 345 при 1000 ° C19003.9–4.1
Нанотрубка из нитрида бораНет данных330002.62[30]
Алмаз160028003.5
ГрафенНет данныхсобственный 130000[31]; инженерное дело 50000-60000[32]1.0
Первый углеродная нанотрубка веревки?36001.3
Углеродная нанотрубка (см. примечание ниже)Нет данных11000–630000.037–1.34
Композиты с углеродными нанотрубкамиНет данных1200[33]Нет данных
Высокопрочная пленка из углеродных нанотрубокНет данных9600[34]Нет данных
Железо (чистый монокристалл)37.874
Limpet Коленная чашечка обыкновенная
зубы (гетит)
4900 3000–6500[35]

^ а
Многие значения зависят от производственного процесса, чистоты или состава.
^ б
Многослойные углеродные нанотрубки обладают наивысшей прочностью на разрыв из всех когда-либо измеренных материалов: одно измерение составляет 63 ГПа, что все еще значительно ниже теоретического значения 300 ГПа.[36] Первые жгуты из нанотрубок (длина 20 мм), предел прочности которых был опубликован (в 2000 г.), имели прочность 3,6 ГПа.[37] Плотность зависит от способа изготовления, и наименьшее значение составляет 0,037 или 0,55 (сплошной).[38]
^ c
Прочность паучьего шелка сильно различается. Это зависит от многих факторов, включая вид шелка (каждый паук может производить несколько для разных целей), вид, возраст шелка, температура, влажность, скорость, с которой прикладывается нагрузка во время тестирования, прикладываемое напряжение длины и способ изготовления шелка. собранные (принудительное шелушение или натуральное прядение)[39] Значение, указанное в таблице, 1000 МПа, примерно соответствует результатам нескольких исследований с участием нескольких различных видов пауков, однако конкретные результаты сильно различались.[40]
^ d
Сила человеческих волос зависит от этнической принадлежности и химического воздействия.
Типичные свойства для отожженный элементы[41]

ЭлементЯнга модуль (ГПа)Смещение или предел текучести (МПа)Окончательный сила (МПа)
кремний1075000–9000
вольфрам411550550–620
утюг21180–100350
титан120100–225246–370
медь130117210
тантал186180200
банка479–1415–200
цинк сплав85–105200–400200–400
никель170140–350140–195
серебро83170
золото79100
алюминий7015–2040–50
вести1612

Предел пропорциональности

Это показатель, определяющий длительность оказываемых нагрузок к деформации тела. При этом оба значения должны изменяться в разный степени по закону Гука. Простыми словами: чем больше оказывается сжатие (растяжение), тем сильнее деформируется образец.

Значение каждого материала находится между абсолютной и классической упругостью. То есть если изменения обратимы, после того как сила перестала действовать (форма стала прежняя – пример, сжатие пружины), то такие параметры нельзя называть пропорциональными.

Как определяют свойства металлов

Проверяют не только то, что называют пределом прочности, но и остальные характеристики стали, например, твердость. Испытания проводят следующим образом: в образец вдавливают шарик или конус из алмаза – наиболее прочной породы. Чем крепче материал, тем меньше след остается. Более глубокие, с широким диаметром отпечатки остаются на мягких сплавах. Еще один опыт – на удар. Воздействие оказывается только после заранее сделанного надреза на заготовке. То есть разрушение проверяется для наиболее уязвимого участка.

Тестирование

Образец круглого прутка после испытания на растяжение
Образцы алюминия для испытаний на растяжение после разрушения

«Чашечная» сторона характерной картины разрушения «чашка – конус»

Некоторые части имеют форму «чашки», а некоторые — форму «конуса».

Основная статья: Испытание на растяжение

Как правило, испытание включает взятие небольшого образца с фиксированной площадью поперечного сечения, а затем его вытягивание с помощью тензометр при постоянной скорости деформации (изменение расчетной длины, деленной на начальную расчетную длину), пока образец не разорвется.

При тестировании некоторых металлов твердость вдавливания линейно коррелирует с прочностью на разрыв. Это важное соотношение позволяет осуществлять экономически важный неразрушающий контроль поставок объемного металла с помощью легкого, даже портативного оборудования, такого как ручное Твердость по Роквеллу тестеры.[5] Эта практическая корреляция помогает гарантия качества в металлообрабатывающей промышленности, чтобы выйти за рамки лаборатории и универсальные испытательные машины.

Механические свойства

Различают 5 характеристик:

  • Предел прочности стали при растяжении и на разрыв это – временное сопротивление внешним силам, напряжение, возникающее внутри.
  • Пластичность – это возможность деформироваться, менять форму, но сохранять внутреннюю структуру.
  • Твердость – готовность встретиться с более твердым материалом и не получить значительных ущербов.
  • Ударная вязкость – способность сопротивляться ударам.
  • Усталость – длительность сохранения качеств под воздействием цикличных нагрузок.

Вязкость сталей

Важным механическим свойством стали является ее вязкость. Обычно термин вязкость применяют, как меру способности металла разрушаться нехрупко.

Характер разрушения – хрупкий или пластичный – хорошо рассматривать на примере ферритных сталей. Все металлы с объемноцентрированной кубической атомной решеткой – как и ферритные стали – имеют один общий недостаток. Они разрушаются хрупко при низких температурах, тогда как при достаточно высоких температурах разрушаются нормально – пластически. Температура перехода от пластического разрушения к хрупкому называется температурой вязко-хрупкого перехода. Она определяется как температура, ниже которой происходит хрупкое разрушение. Температуру хрупкого перехода можно в принципе определять испытанием на растяжение, но при одноосном растяжении ее величина значительно ниже, чем та, которую наблюдают в сложных стальных деталях. Опыт показал, что испытания на ударную вязкость по методу Шарпи намного лучше согласуются с опытными данными по хрупкому разрушению сложных деталей. Схема метода испытания на ударную вязкость по Шарпи показана на рисунке 4.

Предел прочности

Определённая пороговая величина для конкретного материала, превышение которой приведёт к разрушению объекта под действием механического напряжения. Основные виды пределов прочности: статический, динамический, на сжатие и на растяжение. Например, предел прочности на растяжение — это граничное значение постоянного (статический предел) или переменного (динамический предел) механического напряжения, превышение которого разорвет (или неприемлемо деформирует) изделие. Единица измерения — Паскаль [Па], Н/мм ² = [МПа].

Прочность при сжатии

Прочность при сжатии – важное механическое свойство. Характеризуется пределом прочности породы при сжатии в сухом состоянии

Действующий стандарт на блоки подразделяет породы по Этому показателю на три класса: прочные (свыше 80 МПа), средней прочности (40—80 МПа), и низкопрочные (5—40 МПа).

Рис. 16. Схема гидравлического пресса для испытаний образцов на сжатие

Стандарт на камни бортовые (ГОСТ 6666—81) допускает изготовление этой продукции из горных пород с пределом прочности при сжатии не ниже, МПа: для изверженных пород – 90, метаморфических и осадочных – 60. Стандарт на камни брусчатые (ГОСТ 23668—79) допускает изготовление их из изверженных пород с пределом прочности не ниже 100 МПа. Стеновые камни из горных пород (ГОСТ 4001 – 84) в зависимости от предела прочности при сжатии подразделяются на 14 марок (от 4 до 400).

1 – станина; 2 – гидроцилиндр; 3 – поршень, 4 – нижняя плита; 5 – испытываемый образец камня; в – верхняя плита; 7 – установочный винт; 8 – манометры; 9 – насос

Определение предела прочности горных пород при сжатии производят на пяти образцах кубической формы с ребром 40—50 мм или цилиндрах диаметром и высотой 40 – 50 мм. Каждый образец перед испытанием очищают щеткой от рыхлых частиц, пыли и высушивают до постоянной массы. Затем тщательно обрабатывают на шлифовальном станке грани образцов, к которым будет приложена нагрузка, для обеспечения их параллельности. После этого образцы измеряют штангенциркулем, устанавливают в центре опорной плиты пресса (рис. 16), имеющей разметку для центровки образцов, и прижимают верхней плитой пресса, которая должна плотно прилегать по всей поверхности верхней грани образцов.

Нагрузку на образец при испытании увеличивают непрерывно и постоянно со скоростью, обеспечивающей его разрушение через 20—60 с после начала испытаний. Величина разрушающей нагрузки должна составлять не менее 10 % от предельно развиваемого прессом усилия. Момент разрушения образца устанавливают по началу обратного движения указательной стрелки силоизмерителя при работающем нагружающем устройстве.

Предел текучести (σт)

Величина механического напряжения, при которой деформация продолжает увеличиваться без увеличения нагрузки; служит для расчётов допустимых напряжений пластичных материалов.

После перехода предела текучести в структуре металла наблюдаются необратимые изменения: кристаллическая решетка перестраивается, появляются значительные пластические деформации. Вместе с тем происходит самоупрочнение металла и после площадки текучести деформация возрастает при увеличении растягивающей силы.

Нередко этот параметр определяют как «напряжение, при котором начинает развиваться пластическая деформация» [1] , таким образом, отождествляя пределы текучести и упругости. Однако следует понимать, что это два разных параметра. Значения предела текучести превышают предел упругости ориентировочно на 5%.

Предел текучести как показатель надежности конструкции

Предел пропорциональности стали

16 Мая 2018

Гношова Ольга Юрьевна, генеральный директор

Первое, на что стоит обратить внимание при выборе стеллажного оборудования — это марка стали, из которой оно будет изготовлено.

Друзья! Мы находимся в испытательной лаборатории Уральского научно-исследовательского института черных металлов ( ОАО «Уральский институт металлов»

).

Мы покажем вам, чем отличаются марки стали с точки зрения грузонесущей способности, способности сопротивляться стационарной и динамической нагрузке и за что, в конечном счете, платит покупатель стеллажей.

Марки стали отличаются по химическому составу и физическим свойствам. Нас интересует как деформируется

сталь после воздействия на нее нагрузки. Деформации разделяют на
обратимые(упругие)
и
необратимые (пластические)
.

Приведем классический пример из жизни склада: погрузчик ударяет стойку стеллажа. Если стойка принимает свое изначальное положение, то это «деформация упругая»

, а если стойка не возвращается в свое проектное положение, принимает
«форму погрузчика»
, то это называется
«пластическая деформация»
.

Каждый сплав имеет предел

или
критический момент
, после которого упругая деформация переходит в пластическую. Именно этот показатель –
«предел текучести»
стали, нас с вами интересует.

Чем выше показатель предела текучести стали, тем дольше сталь способна находиться в напряженном состоянии и противостоять стационарным и динамическим нагрузкам.

Самыми популярными в России марками стали для производства стеллажей являются марки Ст08пс

,
Ст3пс
,
Ст3сп
,
Ст3кп
,
Ст350
,
S355МС
.

По нашей просьбе, на заводе были изготовлены 4 образца стеллажных стоек. По два образца из стали марок S355MC

и
Ст3
, толщиной
1,5
и
2,0
миллиметра.

Для наглядности их окрасили в разные цвета – сталь Ст3

в
оранжевый
, а сталь
S355MC
в
синий
цвет.

Перед испытаниями в Лаборатории определили химический состав (марку стали) образцов при помощи фотоэлектрического спектрального анализа.

Ниже приведена таблица с ориентировочными показателями различных сталей, используемых при производстве стеллажных комплектующих в России (данные показатели могут отличаться в зависимости от партий проката и при разных условиях).

В Европе при производстве стеллажей используется только сталь с высоким пределом текучести, марки S52 (и других).

σ0,2

— предел текучести условный, МПа

sв

— временное сопротивление разрыву (предел прочности при растяжении), МПа

sT

— предел пропорциональности (предел текучести для остаточной деформации), МПа

d5

— относительное удлинение после разрыва, %

HB

— твердость по Бринеллю

KCU

— ударная вязкость, Дж/см2

Итак, мы подвергли стационарной нагрузке (давлением пресса) две пары стоек.

Первая пара — из стали толщиной 1,5мм

  • Образец из стали Ст3 показал, что пределом его текучести является нагрузка в 94,14 кН, что соответствует 9600 кгс.
  • Образец из стали S355МС показал, что пределом его текучести является нагрузка в 109,8 кН, что соответствует 11200 кгс.

Таким образом, образец из стали S355МС оказался на 16,7% устойчивее к стационарной нагрузке, чем образец из стали Ст3.

показывает, что после наступления критического момента, даже после снижения нагрузки от пресса, образец продолжает деформироваться.

Данное поведение металла стоек следует принимать во внимание в процессе эксплуатации стеллажного оборудования. Необходимо помнить, что деформированная стойка выносит меньшую нагрузку, чем «целая», и поэтому ее нельзя подвергать прежней нагрузке.

  • Образец из стали Ст3 показал, что пределом его текучести является нагрузка в 127,5кН, что соответствует 13000 кгс.
  • Образец из стали S355МС показал, что пределом его текучести является нагрузка в 164,75 кН, что соответствует 16800 кгс.

Таким образом, образец из стали S355МС оказался на 29,5% устойчивее к стационарной нагрузке, чем образец из стали Ст3.

Кстати, европейский концерн «Mecalux» не использует для производства паллетных стеллажей сталь толщиной менее 1,8мм.

Для определения устойчивости стали разных марок к динамическим нагрузкам

, были произведены испытания образцов по показателю
«Предел прочности на растяжение»
.

Предел прочности на растяжение есть пороговая величина постоянного (для статического предела прочности) или, соответственно, переменного (для динамического предела прочности) механического напряжения, превышая который механическое напряжение в результате (за конечный достаточно короткий промежуток времени) разорвет тело из конкретного материала.

Нами были подготовлены два образца в виде металлических пластин из стали Ст3 и S355МС, которые поочередно подвергли растяжению

  • Образец из стали Ст3 показал, что пределом его прочности является нагрузка в 8,24кН, что соответствует 840 кгс.
  • Образец из стали S355МС показал, что пределом его прочности является нагрузка в 10,2 кН, что соответствует 1040 кгс.

Таким образом, образец из стали S355МС оказался на 23,85% прочнее на растяжение, чем образец из стали Ст3.

Сегодняшними испытания мы хотели наглядно показать, что образцы из разных марок стали ведут себя по-разному после воздействия нагрузки.

Вы увидели, что образцы из S355MC стали держат гораздо большие стационарные и динамические нагрузки, чем образцы из стали Ст3.

Поэтому, при выборе стеллажного оборудования марка стали имеет значение!

Надеемся, что приведенная информация покажется Вам интересной и полезной. ООО «Юнирек» проектирует и поставляет стеллажное оборудование уже более 8-ми лет, безаварийная служба поставленного оборудования обеспечена политикой компании – мы не идем на компромиссы в вопросах качества и безопасности.

Мы покажем вам, чем отличаются марки стали с точки зрения грузонесущей способности, способности сопротивляться стационарной и динамической нагрузке и за что, в конечном счете, платит покупатель стеллажей.

data-title=Предел текучести как показатель надежности конструкции. Выбираем марку стали для складского стеллажа data-background=none; data-options=small,square,line,horizontal,nocounter,sepcounter=1,theme=14 data-services=ontakte,odnoklassniki,,,google,moimir>

Источник: https://www.unirack.ru/articles/stellazhi/predel-tekuchesti-kak-pokazatel-nadezhnosti-konstruktsii-vybiraem-marku-stali-dlya-skladskogo-stella/

Предел выносливости или предел усталости (σR)

Способность материала воспринимать нагрузки, вызывающие циклические напряжения. Этот прочностной параметр определяют как максимальное напряжение в цикле, при котором не происходит усталостного разрушения изделия после неопределенно большого количества циклических нагружений (базовое число циклов для стали Nb = 10 7 ). Коэффициент R (σR) принимается равным коэффициенту асимметрии цикла. Поэтому предел выносливости материала в случае симметричных циклов нагружения обозначают как σ-1, а в случае пульсационных — как σ.

Отметим, что усталостные испытания изделий очень продолжительны и трудоёмки, они включают анализ больших объёмов экспериментальных данных при произвольном количестве циклов и существенном разбросе значений. Поэтому чаще всего используют специальные эмпирические формулы, связывающие предел выносливости с другими прочностными параметрами материала. Наиболее удобным параметром при этом считается предел прочности.

Для сталей предел выносливости при изгибе как правило составляет половину от предела прочности: Для высокопрочных сталей можно принять:

Для обычных сталей при кручении в условиях циклически изменяющихся напряжений можно принять:

Приведённые выше соотношения стоит применять осмотрительно, потому что они получены при конкретных режимах нагружения, т.е. при изгибе и при кручении. Однако, при испытании на растяжение-сжатие предел выносливости становится примерно на 10—20% меньше, чем при изгибе.

Зависимость между напряжением текучести и пределом прочности

Связь между напряжением текучести и пределом прочности устанавливается по зависимости между экстраполированным пределом текучести и σB
. Поскольку по экстраполированному пределу текучести можно достаточно точно определить напряжение текучести для большинства материалов, начиная со степени деформации , то такое допущение можно считать оправданным.

Ниже рассмотрены зависимости между пределом прочности и экстраполированным пределом текучести кривых упрочнения при растяжении первого рода и при сжатии второго рода.

Экстраполированный предел текучести у кривых упрочнения первого рода при растяжении находится по пересечению касательной к кривой упрочнения в точке начала образования шейки с осью ординат. У кривых упрочнения второго рода при сжатии экстраполированный предел текучести S0 (см. рис. 1) представляет собой напряжение, соответствующее по величине отрезку ординаты, отсекаемому прямой, являющейся продолжением участка III кривой упрочнения.

Согласно теоретическим выкладкам М. П. Марковца для материалов, у которых равномерное относительное поперечное сужение ΨB

не более 0,15, разница между экстраполированным пределом текучести определенным по кривым упрочнения при растяжении, и пределом прочности σ
B
не превышает 3%, а при Ψ
B
до 0,2 — не более 7%. При этом всегда должно быть меньше величины σ
B
.

Теоретически установленную зависимость между и σB

М.П. Марковец подтвердил экспериментально. Было показано, что независимо от рода материала (цветные и черные металлы), вида предшествующей термической обработки (отжиг, нормализация, закалка, закалка + отпуск) и прочности ( изучаемых материалов составлял 20-180 кГ/мм2) отношение для материалов с до 15% близко к единице (рис. 1). Только для латуни и аустенитной стали ЭИ69, у которых величина Ψ
B
доходит до 30%, это соотношение составляет 1,2-1,3.

П. Марковцем также была проведена большая работа по сопоставлению и σB

по экспериментальным данным других исследователей — Н. Н. Давиденкова, Кербера и Роланда. Было установлено, что данные различных авторов, полученные экспериментально в разных лабораториях над огромным количеством металлов н сплавов (алюминии, меди и их сплавах, углеродистых и легированных сталях) при комнатных и повышенных температурах (от 20 до 300°С), подтверждают теоретически установленную закономерность для металлов и сплавов, у которых Ψ
B
не превышает 15%.

Экспериментально определим взаимосвязь между экстраполированным пределом текучести при сжатии S0 и σB

. В качестве исследуемого материала служили углеродистые и легированные горячекатаные и термически обработанные стали (табл. 1). Кривые упрочнения строили по результатам осадки образцов с торцовыми цилиндрическими выточками. Результаты сравнения графически изображены на рис. 1, из которого видно, что между величинами S0 и σ
B
независимо от марки изделия и вида, и режима предварительной обработки имеется линейная зависимость. Математическая обработка экспериментальных данных показывает, что S0 в среднем меньше σ
B
примерно на 6%, т. е.

Полученные экспериментальные данные согласуются с экспериментальными и теоретическими данными М. П. Марковца о зависимости между экстраполированным пределом текучести при растяжении и σB

в том смысле, что S0 меньше σ
B
примерно на ту же величину.

Таблица 1

Химический состав и вид предшествующей обработки сталей, для которых устанавливали зависимость между экстраполированным пределом текучести при сжатии S0 и пределом прочности σB

СтальПредшествующая обработкаСодержание элементов в %
CMnSiCrNiMo
10 Горячая прокатка 0,110,450,21
15 То же 0,150,430,27
20 » 0,190,370,37
15Х »0,130,420,32 0,90
20Х »0,240,670,250,91
45Х »0,440,610,190,90
12ХНЗА »0,130,260,642,95
12ХНЗАОтжиг, нормализация0,160,400,360,662,81
40ХНМАОтжиг, нормализация, улучшение (t0 mn=600°С)0,370,600,240,661,390,15-0,25

Предел пропорциональности (σ)

Максимальная величина напряжения для конкретного материала, при которой ещё действует закон Гука, т.е. деформация тела прямо пропорционально зависит от прикладываемой нагрузки (силы). Обратите внимание, что для множества материалов достижение (но не превышение!) предела упругости приводит к обратимым (упругим) деформациям, которые, впрочем, уже не прямо пропорциональны напряжениям. При этом такие деформации могут несколько «запаздывать» относительно роста или снижения нагрузки.

Диаграмма деформации металлического образца при растяжении в координатах удлинение (Є) — напряжение (σ).

Источник: www.smalley.ru

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]