Предел прочности
— это то же, что и временное сопротивление материала. Но несмотря на то, что правильнее использовать термин
временное сопротивление
, понятие предел прочности лучше прижилось в технической разговорной речи. В то же время в нормативной документации, стандартах применяют термин «временное сопротивление».
©ИЦМ(www.modificator.ru)
Прочность
— это сопротивление материала деформации и разрушению, одно из основных
механических свойств
. Другими словами, прочность — это свойство материалов, не разрушаясь, воспринимать те или иные воздействия (нагрузки, температурные, магнитные и другие поля).
К характеристикам прочности при растяжении
относятся модуль нормальной упругости, предел пропорциональности, предел упругости, предел текучести и временное сопротивление (предел прочности).
Предел прочности
— это максимальное механическое напряжение, выше которого происходит разрушение материала, подвергаемого деформации; предел прочности при растяжении обозначается σВ и измеряется в килограммах силы на квадратный сантиметр (кгс/см2), а также указывается в мегапаскалях (МПа).
Различают:
- предел прочности при растяжении,
- предел прочности при сжатии,
- предел прочности при изгибе,
- предел прочности при кручении.
Предел кратковременной прочности (МПа)
определяется с помощью испытаний на растяжение, деформацию проводят до разрушения. С помощью испытаний на растяжение определяют временное сопротивление, удлинение, предел упругости и др.. Испытания на длительную прочность предназначены главным образом для оценки возможности использования материалов при высоких температурах (длительная прочность, ползучесть); в результате определяется σB/Zeit — предел ограниченной длительной прочности на заданный срок службы. [1]
©ИЦМ(www.modificator.ru)
Физику прочности
основал Галилей: обобщая свои опыты, он открыл (1638 г.), что при растяжении или сжатии нагрузка разрушения
P
для данного материала зависит только от площади поперечного сечения
F
. Так появилась новая физическая величина — напряжение
σ=P
/
F
— и физическая постоянная материала: напряжение разрушения [4].
Физика разрушения как фундаментальная наука о прочности металлов
возникла в конце 40-х годов XX века [5]; это было продиктовано острой необходимостью разработки научно обоснованных мер для предотвращения участившихся катастрофических разрушений машин и сооружений. Раньше в области прочности и разрушения изделий учитывалась только классическая механика, основанная на постулатах однородного упруго-пластического твёрдого тела, без учёта внутренней структуры металла. Физика разрушения учитывает также атомно-кристаллическое строение решётки металлов, наличие дефектов металлической решётки и законы взаимодействия этих дефектов с элементами внутренней структуры металла: границами зёрен, второй фазой, неметаллическими включениями и др.
Большое влияние на прочность материала
оказывает наличие ПАВ в окружающей среде, способных сильно адсорбироваться (влага, примеси); происходит уменьшение предела прочности.
К повышению прочности металла приводят целенаправленние изменения металлической структуры, в том числе — модифицирование сплава.
Учебный фильм о прочности металлов (СССР, год выпуска: ~1980):
Предел прочности
Определённая пороговая величина для конкретного материала, превышение которой приведёт к разрушению объекта под действием механического напряжения. Основные виды пределов прочности: статический, динамический, на сжатие и на растяжение. Например, предел прочности на растяжение — это граничное значение постоянного (статический предел) или переменного (динамический предел) механического напряжения, превышение которого разорвет (или неприемлемо деформирует) изделие. Единица измерения — Паскаль [Па], Н/мм ² = [МПа].
Политика cookie
Выбор режущего инструмента согласно значениям предела прочности стали H/мм2
Для правильного подбора режущего инструмента (кольцевой фрезы, конусной зенковки, корончатого или ступенчатого сверла), ознакомитесь со значением «Предел кратковременной прочности» в разделе таблицы «Механические свойства» для вашего материала (Примечание: Далее в тексте — предел прочности).
Эта информация находиться в свободном доступе, достаточно ввести в поисковике название или марку вашей стали.
Предел прочности — это максимальное механическое напряжение, выше которого происходит разрушение материала, подвергаемого деформации (в данном случае лезвийной обработки при помощи режущего инструмента).
Предел прочности при растяжении обозначается в таблице механических свойств, буквами σв(МПа) и измеряется в килограммах силы на квадратный сантиметр (кгс/см2), а также указывается в мега Паскалях (МПа). В нормативной документации и стандартах обозначен термином «временное сопротивление».
σв — временное сопротивление разрыву (предел кратковременной прочности), Мпа. 1 МПа = 1 Н/мм²
Предел прочности стали зависит от марки и изменяется в пределах от 300 Н/мм2 у обычной низкоуглеродистой конструкционной стали до 900 и выше Н/мм2 у специальных и высоколегированных марок.
Режущий инструмент выполненный из специальной высоколегированной быстрорежущей стали HSS-XE от производителя Karnasch (Германия), предназначен для сверления и обработки отверстий в сталях обычного и повышенного качества прочностью до 900 H/мм2.
Дополнительно, режущий инструмент усилен упрочняющим покрытием Gold Tech которое эффективно способствует повышенной износостойкости металлообрабатывающего инструмента.
Для сверления и обработки отверстий в прочных сталях и сталях высокого качества, рекомендуется использовать режущий инструмент, оснащенный твердосплавными напайками, выполненными из карбид вольфрама или инструментов выполненным целиком из специальной порошковой стали с возможностью обрабатывать материалы с прочностью до 1400 Н/мм2.
В таблице, представленной ниже, вы сможете ознакомится с некоторыми видами сталей и их значениями предела прочности. Стали разделены на группы прочности.
Например, для сверления обычной конструкционной стали С235 с пределом прочности до
360 Н/мм2 вполне подойдет кольцевая фреза, изготовленная из высоколегированной, специальной стали HSS XE с возможностью сверления материалов, прочностью до 900 Н/мм2 .
Или для зенковки закладных пластин, изготовленных из стали С390 подойдет конический зенкер из высоколегированной стали HSS XE с упрочняющим покрытием для повышения износостойкости к материалам с пределом прочности до 900 Н/мм2.
Так же вы сможете рассверлить или высверлить отверстие в мостовой стали 15ХСНД используя кольцевую фрезу из быстрорежущей высоколегированной стали HSS XE с TIN или BlueTek покрытием. Но даже с правильно подобранными оборотами и подачей, этих отверстий будет выполнено меньше чем при использовании инструмента с твердосплавными режущими пластинами, специально предназначенного для обработки прочных, качественных сталей с прочностью до 1400 Н/мм2.
И конечно для обработки нержавеющих сталей прочностью более 510 H/мм2, предпочтительней использовать режущий инструмент, (корончатые сверла или конусные зенкеры), с сменными твердосплавными пластинами. Metallrent.ru
Для обработки отверстий в износостойких сталях специального назначения используется режущий инструмент, специально предназначенный для этого. Производитель Karnasch (Германия), выпускает корончатые сверла, специально спроектированные для сверления таких крепких материалов как Hardox или железнодорожных рельс с наименованием Hardox-Line или Rail-Line.
Самым крепким инструментом, имеющимся у производителя, считаются цельные корончатые и спиральные сверла, выполненные из специальной порошковой стали. Прочность материалов для которых они предназначены имеет значение 1400 Н/мм2 или до 65 HRC.
Предел текучести (σт)
Величина механического напряжения, при которой деформация продолжает увеличиваться без увеличения нагрузки; служит для расчётов допустимых напряжений пластичных материалов.
После перехода предела текучести в структуре металла наблюдаются необратимые изменения: кристаллическая решетка перестраивается, появляются значительные пластические деформации. Вместе с тем происходит самоупрочнение металла и после площадки текучести деформация возрастает при увеличении растягивающей силы.
Нередко этот параметр определяют как «напряжение, при котором начинает развиваться пластическая деформация» [1] , таким образом, отождествляя пределы текучести и упругости. Однако следует понимать, что это два разных параметра. Значения предела текучести превышают предел упругости ориентировочно на 5%.
Предел выносливости или предел усталости (σR)
Способность материала воспринимать нагрузки, вызывающие циклические напряжения. Этот прочностной параметр определяют как максимальное напряжение в цикле, при котором не происходит усталостного разрушения изделия после неопределенно большого количества циклических нагружений (базовое число циклов для стали Nb = 10 7 ). Коэффициент R (σR) принимается равным коэффициенту асимметрии цикла. Поэтому предел выносливости материала в случае симметричных циклов нагружения обозначают как σ-1, а в случае пульсационных — как σ.
Отметим, что усталостные испытания изделий очень продолжительны и трудоёмки, они включают анализ больших объёмов экспериментальных данных при произвольном количестве циклов и существенном разбросе значений. Поэтому чаще всего используют специальные эмпирические формулы, связывающие предел выносливости с другими прочностными параметрами материала. Наиболее удобным параметром при этом считается предел прочности.
Для сталей предел выносливости при изгибе как правило составляет половину от предела прочности: Для высокопрочных сталей можно принять:
Для обычных сталей при кручении в условиях циклически изменяющихся напряжений можно принять:
Приведённые выше соотношения стоит применять осмотрительно, потому что они получены при конкретных режимах нагружения, т.е. при изгибе и при кручении. Однако, при испытании на растяжение-сжатие предел выносливости становится примерно на 10—20% меньше, чем при изгибе.
Как увеличить прочностные характеристики
Есть несколько способов это сделать, два основных:
- добавка примесей;
- термообработка, например, закал.
Иногда они используются вместе.
Общие сведения о сталях
Все они обладают химическими свойствами и механическими. Ниже подробнее поговорим о способах увеличения прочности, но для начала представим схему, на которой представлены все разновидности:
Также посмотрим более подробное видео:
Все они обладают химическими свойствами и механическими. Ниже подробнее поговорим о способах увеличения прочности, но для начала представим схему, на которой представлены все разновидности:
Углерод
Чем больше углеродность вещества, тем выше твердость и меньше пластичность. Но в составе не должно быть более 1% химического компонента, так как большее количество приводит к обратному эффекту.
Марганец
Очень полезная добавка, но при массовой доле не более двух процентов. Обычно Mn добавляют для улучшения качеств обрабатываемости. Материал становится более подвержен ковке и свариванию. Это объясняется вытеснением кислорода и серы.
Кремний
Эффективно повышает прочностные характеристики, при этом не затрагивая пластичность. Максимальное содержание – 0,6%, иногда достаточно и 0,1%. Хорошо сочетается с другими примесями, в совокупности можно увеличить устойчивость к коррозии.
Легирующие добавки
Также можно встретить следующие примеси:
- Хром – увеличивает твёрдость.
- Молибден – защищает от ржавчины.
- Ванадий – для упругости.
- Никель – хорошо влияет на прокаливаемость, но может привести к хрупкости.
Эти и другие химические вещества должны применяться в строгих пропорциях в соответствии с формулами. В статье мы рассказали про предел прочности (кратковременное сопротивление) – что это, и как с ним работать. Также дали несколько таблиц, которым можно пользоваться при работе. В качестве завершения, давайте посмотрим видеоролик:
Предел пропорциональности (σ)
Максимальная величина напряжения для конкретного материала, при которой ещё действует закон Гука, т.е. деформация тела прямо пропорционально зависит от прикладываемой нагрузки (силы). Обратите внимание, что для множества материалов достижение (но не превышение!) предела упругости приводит к обратимым (упругим) деформациям, которые, впрочем, уже не прямо пропорциональны напряжениям. При этом такие деформации могут несколько «запаздывать» относительно роста или снижения нагрузки.
Диаграмма деформации металлического образца при растяжении в координатах удлинение (Є) — напряжение (σ).
Напряжения при растяжении-сжатии
Условие статической прочности при растяжении
Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:
где σ — нормальное напряжение в произвольной точке поперечного сечения стержня. Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.
Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:
Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.
мтомд.инфо
Раздел: | Материаловедение. Металловедение. |
Основными механическими свойствами являются прочность, упругость, вязкость, твердость. Зная механические свойства, конструктор обоснованно выбирает соответствующий материал, обеспечивающий надежность и долговечность конструкций при их минимальной массе. Механические свойства определяют поведение материала при деформации и разрушении от действия внешних нагрузок.
В зависимости от условий нагружения механические свойства могут определяться при:
- Статическом нагружении – нагрузка на образец возрастает медленно и плавно.
- Динамическом нагружении – нагрузка возрастает с большой скоростью, имеет ударный характер.
- Повторно, переменном или циклическим нагружении – нагрузка в процессе испытания многократно изменяется по величине или по величине и направлению.
Механические свойства металлов, сталей и сплавов. Прочность.
Прочность – способность материала сопротивляться деформациям и разрушению.
Испытания проводятся на специальных машинах, которые записывают диаграмму растяжения, выражающую зависимость удлинения образца Δl (мм) от действующей нагрузки Р, то есть Δl = f(P). Но для получения данных по механическим свойствам перестраивают: зависимость относительного удлинения Δl от напряжения δ.
Диаграмма растяжения материала
Рис 1: а – абсолютная, б – относительная; в – схема определения условного предела текучести
Проанализируем процессы, которые происходят в материале образца при увеличении нагрузки: участок оа на диаграмме соответствует упругой деформации материала, когда соблюдается закон Гука. Напряжение, соответствующее упругой предельной деформации в точке а, называется пределом пропорциональности.
Механические свойства металлов, сталей и сплавов. Предел пропорциональности.
Предел пропорциональности (σпц) – максимальное напряжение, до которого сохраняется линейная зависимость между деформацией и напряжением.
При напряжениях выше предела пропорциональности происходит равномерная пластическая деформация (удлинение или сужение сечения). Каждому напряжению соответствует остаточное удлинение, которое получаем проведением из соответствующей точки диаграммы растяжения линии параллельной оа.
Так как практически невозможно установить точку перехода в неупругое состояние, то устанавливают условный предел упругости, – максимальное напряжение, до которого образец получает только упругую деформацию. Считают напряжение, при котором остаточная деформация очень мала (0,005…0,05%). В обозначении указывается значение остаточной деформации (σ0.05).
Механические свойства металлов, сталей и сплавов. Предел текучести.
Предел текучести характеризует сопротивление материала небольшим пластическим деформациям. В зависимости от природы материала используют физический или условный предел текучести.
Физический предел текучести σm – это напряжение, при котором происходит увеличение деформации при постоянной нагрузке (наличие горизонтальной площадки на диаграмме растяжения). Используется для очень пластичных материалов.
Но основная часть металлов и сплавов не имеет площадки текучести.
Условный предел текучести σ0.2 – это напряжение вызывающее остаточную деформацию δ = 0.20%.
Физический или условный предел текучести являются важными расчетными характеристиками материала. Действующие в детали напряжения должны быть ниже предела текучести. Равномерная по всему объему пластическая деформация продолжается до значения предела прочности. В точке в в наиболее слабом месте начинает образовываться шейка – сильное местное утомление образца.
Механические свойства металлов, сталей и сплавов. Предел прочности.
Предел прочности σв – напряжение, соответствующее максимальной нагрузке, которую выдерживает образец до разрушения (временное сопротивление разрыву).
Образование шейки характерно для пластичных материалов, которые имеют диаграмму растяжения с максимумом. Предел прочности характеризует прочность как сопротивления значительной равномерной пластичной деформации. За точкой В, вследствие развития шейки, нагрузка падает и в точке С происходит разрушение.
Истинное сопротивление разрушению – это максимальное напряжение, которое выдерживает материал в момент, предшествующий разрушению образца (рисунок 2).
Истинное сопротивление разрушению значительно больше предела прочности, так как оно определяется относительно конечной площади поперечного сечения образца.
Истинная диаграмма растяжения
Fк – конечная площадь поперечного сечения образца.
Истинные напряжения Si определяют как отношение нагрузки к площади поперечного сечения в данный момент времени.
При испытании на растяжение определяются и характеристики пластичности.
Определение
Предел прочности материала при растяжении – это интенсивное свойство ; поэтому его значение не зависит от размера испытуемого образца. Однако, в зависимости от материала, это может зависеть от других факторов, таких как подготовка образца, наличие или отсутствие поверхностных дефектов, а также температура окружающей среды и материала для испытаний.
Некоторые материалы ломаются очень резко без , что называется хрупким разрушением. Другие, которые являются более пластичным, включая большинство металлов, испытывают некоторую пластическую деформацию и , возможно , сужения до того перелома.
Прочность на растяжение определяется как напряжение, которое измеряется как сила на единицу площади. Для некоторых неоднородных материалов (или для собранных компонентов) это может быть выражено как сила или как сила на единицу ширины. В Международной системе единиц (СИ) единицей измерения является паскаль (Па) (или кратное ему, часто мегапаскали (МПа), с использованием префикса СИ мега
); или, что эквивалентно паскалям, ньютонам на квадратный метр (Н / м 2 ). Обычная единица измерения в Соединенных Штатах – фунты на квадратный дюйм (фунт / дюйм 2 или фунт / кв. Дюйм). Килофунды на квадратный дюйм (ksi, или иногда kpsi) равны 1000 psi и обычно используются в Соединенных Штатах при измерении прочности на разрыв.
Пластичные материалы
Рисунок 1: «Инженерная» кривая напряжения-деформации (σ – ε), типичная для алюминия 1. Предел прочности 2. Предел текучести 3. Пропорциональное предельное напряжение 4. Разрушение 5. Деформация смещения (обычно 0,2%)
Рисунок 2: «Техническая» (красный) и «истинная» (синяя) кривая зависимости напряжения от деформации, типичная для конструкционной стали .
- 1: Абсолютная сила
- 2: Предел текучести (предел текучести)
- 3: Разрыв
- 4: Область деформационного упрочнения
- 5: область шеи
- A: Видимое напряжение ( F
/
A
) - B: Фактическое напряжение ( F
/
A
)
Многие материалы могут демонстрировать линейное упругое поведение , определяемое линейной зависимостью напряжения от деформации , как показано на рисунке 1 до точки 3. Упругое поведение материалов часто распространяется в нелинейную область, представленную на рисунке 1 точкой 2 ( «предел текучести»), до которого деформации полностью восстанавливаются при снятии нагрузки; то есть образец, нагруженный упруго при растяжении , удлиняется, но при разгрузке возвращается к своей первоначальной форме и размеру. За пределами этой упругой области для пластичных материалов, таких как сталь, деформации пластичны . Пластически деформированный образец не возвращается полностью к своим первоначальным размерам и форме при разгрузке. Для многих приложений пластическая деформация недопустима и используется в качестве конструктивного ограничения.
После предела текучести пластичные металлы проходят период деформационного упрочнения, при котором напряжение снова увеличивается с увеличением деформации, и они начинают сужаться , поскольку площадь поперечного сечения образца уменьшается из-за пластического течения. В достаточно пластичном материале, когда образование шейки становится значительным, это вызывает изменение инженерной кривой напряжения-деформации (кривая A, рисунок 2); это связано с тем, что инженерное напряжение
рассчитывается исходя из исходной площади поперечного сечения до образования шейки. Точка разворота – это максимальное напряжение на инженерной кривой напряжение-деформация, а координата инженерного напряжения этой точки – это предел прочности на растяжение, определяемый точкой 1.
Предел прочности на растяжение не используется при проектировании пластичных статических элементов, поскольку методы проектирования диктуют использование предела текучести . Однако он используется для контроля качества из-за простоты тестирования. Он также используется для приблизительного определения типов материалов для неизвестных образцов.
Предел прочности на растяжение является обычным инженерным параметром при проектировании элементов из хрупкого материала, поскольку такие материалы не имеют предела текучести .
Предел выносливости, предел усталости
– наибольшая величина напряжения цикла, при которой ещё не происходит усталостное разрушение при заданном большом числе циклов нагружения (например, 10 6 , 10 7 , 10 8 ). Механическая характеристика материала, характеризующая усталостную прочность. Определяется усталостными испытаниями идентичных образцов при постоянном значении коэффициента асимметрии и различных значениях максимального напряжения цикла. Обозначается σr, где r – коэффициент асимметрии цикла. Предел выносливости (усталости) для симметричного цикла нагружения обозначается σ-1, для пульсационного – σ, и т. д.
♦ Преде́л выно́сливости ♦ Преде́л уста́лости
Классификация и применение бетонов
Деление бетона на виды достаточно условное. Как правило, легкими считают бетоны марок М10-М200, обычными М250-М400, тяжелыми М450 и выше.
На делится не только по прочности, но и по морозостойкости, плотности. Существуют и особые бетоны, используемые для конкретных задач и сфер.
Наиболее распространенные марки бетона и его применение:
М100 – обычно выбирают для подбетонки, различных подготовительных работ, когда важно просто сцепить между собой зерна гравийно-песчаной подушки.
М150 – состав более крепкий, из него делают отмостки, тротуары, цементные стяжки, ЖБИ малого размера.
М200 – популярная марка для произведения работ в частном строительстве, подходит для небольших фундаментов, ненагруженных стен в малоэтажном строительстве.
М250 – актуален для создания лестничных маршей, опорных/несущих конструкций.
М300 – самый популярный бетон в строительстве, используется в любых работах (от создания основания для тяжелых домов до заливки монолитных перекрытий, стен).
М350 – прочный бетон, который подходит для создания конструкций с повышенными нагрузками (балки, колонны и т.д.).
М400 и выше марки применяются для создания особых конструкций специальных объектов – гидротехнические сооружения, военные объекты и т.д.
Виды бетона по плотности:
- Легкий (облегченный) – производится с включением в состав пористых заполнителей (туф, пемза, керамзит): крупнопористый, , газо/пенобетон и т.д. Плотность до 1200 кг/м3, используются в малоэтажном строительстве, актуальных для утепления, отличаются сравнительно невысокой прочностью.
- – производится с введением в состав горных пород (диабаз, гранит, известняк), плотность равна 1800-2500 кг/м3. Применяется для железобетонных, бетонных конструкций гражданских, промышленных зданий, для создания транспортных и гидротехнических объектов в том числе.
- Особо тяжелый бетон – готовится с использованием железной руды, опилок, стружки. Актуальна смесь для строительства специальных объектов, способных противостоять радиоактивному излучению, плотность выше 2500 кг/м3.
Виды бетона по классу морозостойкости:
- F15 – подходит для внутренних работ (создание перегородок, заливка пола и т.д.)
- F25 – самое малое значение для кладки внешних стен отапливаемых зданий.
- F50 и более – подходит для фундамента в регионах со средним морозом.
Водостойкость бетона обозначается буквой W, может варьироваться в пределах W2-W20, говорит о максимальном давлении водяного столба, которое способен выдержать бетон, единицы измерения атм•10-1.
Предел длительной прочности
– условное напряжение, определяемое как отношение нагрузки, при которой разрушается образец через определённый промежуток времени, к первоначальной площади поперечного сечения. Механическая характеристика конструкционных материалов, применяемая в основном для оценки их свойств при высоких температурах. Обозначается предел длительной прочности σдл, σвt или 900 σ1000, где нижний индекс указывает время испытания, а верхний – температуру.
♦ Преде́л дли́тельной про́чности
Предел текучести
– наименьшее механическое напряжение, при котором пластическая деформация происходит без заметного увеличения нагрузки. Обозначается σт. Если материал не имеет заметной площадки текучести, то в качестве условного предела текучести принимают напряжение, при котором остаточная деформация испытуемого образца принимает установленное техническими условиями значение. Наиболее часто условный предел текучести находят при относительной остаточной деформации 0,2% и обозначают σ0,2. Предел текучести является одной из основных механических характеристик пластичных конструкционных материалов и устанавливает для них границу между упругой и упруго-пластичной деформацией. При практических прочностных расчётах предел текучести обычно принимают равным пределу упругости и пределу пропорциональности.
♦ Преде́л теку́чести
Легирующие добавки в составе сплавов
Это вещества, намеренно добавляемые в расплав для улучшения свойств сплава и доведения его параметров до требуемых. Одни из них добавляются в больших количествах (более процента), другие — в очень малых. Наиболее часто применяю следующие легирующие добавки:
- Хром. Применяется для повышения прокаливаемости и твердости. Доля – 0,8-0,2%.
- Бор. Улучшает хладноломкость и радиационную стойкость. Доля – 0,003%.
- Титан. Добавляется для улучшения структуры Cr-Mn сплавов. Доля – 0,1%.
- Молибден. Повышает прочностные характеристики и коррозионную стойкость, снижает хрупкость. Доля – 0,15-0,45%.
- Ванадий. Улучшает прочностные параметры и упругость. Доля – 0,1-0,3%.
- Никель. Способствует росту прочностных характеристик и прокаливаемости, однако при этом ведет к увеличению хрупкости. Этот эффект компенсируют одновременным добавлением молибдена.
Металлурги используют и более сложные комбинации легирующих добавок, добиваясь получения уникальных сочетаний физико-механических свойств стали. Стоимость таких марок в несколько раз (а то и десятков раз) превышает стоимость обычных низкоуглеродистых сталей. Применяются они для особо ответственных конструкций и узлов.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Предел упругости
– наибольшая величина механического напряжения, при котором ещё отсутствуют остаточные деформации нагружаемого тела. Предел упругости является границей упругих деформаций. Обычно в качестве предела упругости принимают напряжение, при котором остаточная деформация не превышает определённого значения. Техническими условиями для границы области упругой деформации задаётся предельное значение относительной деформации: 0,001%, 0,003%, 0,005%, 0,01%, 0,03% и т. д. При практических прочностных расчётах предел упругости принимают, как правило, равным пределу текучести и пределу пропорциональности.
♦ Преде́л упру́гости