ГОСТ 1050-88 Сталь качественная и высококачественная. Сортовой и фасонный прокат, калиброванная сталь. Часть 1.


Виды сталей и особенности их маркировки

Различные области применения сталей требуют наличие у нее строго определенных свойств – физических, химических. В одном случае требуется максимально высокая износоустойчивость, в других – повышенная устойчивость против коррозии, в третьих внимание уделяется магнитным свойствам.

Видов стали много. Основная масса выплавляемого металла идет в производство конструкционной стали, в которую входят такие виды:

  • Строительная. Низколегированная сталь с хорошей свариваемостью. Основное назначение – производство строительных конструкций.
  • Пружинная. Имеют высокую упругость, усталостную прочность, сопротивление разрушению. Идет на производство пружин, рессор.
  • Подшипниковая. Основной критерий – высокая износоустойчивость, прочность, низкая текучесть. Применяется для производства узлов и составляющих подшипников различного назначения.
  • Коррозионностойкая (нержавеющая). Высоколегированная сталь с повышенной стойкостью к воздействию агрессивных веществ.
  • Жаропрочная. Отличается способностью длительное время работать в нагруженном состоянии при повышенных температурах. Область применения – детали двигателей, в том числе газотурбинных.
  • Инструментальная. Применяется для производства метало- и деревообрабатывающих, измерительных инструментов.
  • Быстрорежущая. Для изготовления инструмента металлообрабатывающего оборудования.
  • Цементируемая. Применяется при изготовлении деталей и узлов, работающих при больших динамических нагрузках в условиях поверхностного износа.

Читать также: Как подключить четыре лампочки от одного выключателя

Марки стали по прочности таблица

При расшифровке обозначений нужно учитывать, что каждому из видов соответствует строго определенная буква в маркировке.

Текучесть металла

Знание механических свойств материала чрезвычайно важно для конструктора, который использует их в своей работе. Он определяет максимальную нагрузку на ту или иную деталь или конструкцию в целом, при превышении которой начнется пластическая деформация, и конструкция потеряет с вою прочность, форму и может быть разрушена

Разрушение или серьезная деформация строительных конструкций или элементов транспортных систем может привести к масштабным разрушениям, материальным потерям и даже к человеческим жертвам.

Предел текучести — это максимальная нагрузка, которую можно приложить к конструкции без ее деформации и последующего разрушения. Чем выше его значения, тем большие нагрузки конструкция сможет выдержать.

Текучесть металла

На практике предел текучести металла определяет работоспособность самого материала и изделий, изготовленных из него, под предельными нагрузками. Люди всегда прогнозировали предельные нагрузки, которые могут выдержать возводимые ими строения или создаваемые механизмы. На ранних этапах развития индустрии это определялось опытным путем, и лишь в XIX веке было положено начало созданию теории сопротивления материалов. Вопрос надежности решался созданием многократного запаса по прочности, что вело к утяжелению и удорожанию конструкций. Сегодня необязательно создавать макет изделия определенного масштаба или в натуральную величину и проводить на нем опыты по разрушению под нагрузкой — компьютерные программы семейства CAE (инженерных расчетов) могут с точностью рассчитать прочностные параметры готового изделия и предсказать предельные значения нагрузок.

Классификация по химическому составу

Основными легирующими добавками являются металлы. Варьируя количественный состав добавок и их массовую долю, получают большое разнообразие марок стали. Само по себе чистое железо имеет невысокие технические свойства. Малая механическая прочность, сильная подверженность коррозии, требуют введения в состав сплава дополнительных веществ, которые направлены на улучшение одного из качеств, либо сразу нескольких.

Нередко улучшение одних характеристик влечет за собой ухудшение иных. Так, высоколегированные нержавеющие стали могут иметь низкую механическую прочность, а качественные углеродистые вместе с высокой прочностью получают ослабленные коррозионные свойства.

Как уже говорилось выше, одной из классификаций марок стали является ее химический состав. Основными компонентами всех без исключения сталей являются железо и углерод, содержание которого не должно превышать 2,14 %. В зависимости от количества и пропорций добавок, содержание железа в композиции должно составлять не менее 50 %.

По количеству содержащегося углерода классифицируют три группы сталей:

  • Малоуглеродистые – содержание углерода менее 0,25 %;
  • Среднеуглеродистые – 0,25-0,6 % углерода;
  • Высокоуглеродистые, с содержанием углерода более 0,6 %.

Увеличение процентного содержания углерода повышает твердость металла, но, вместе с тем, снижается его прочность.

Для улучшения эксплуатационных качеств, в состав сплава вводят определенное количество химических элементов. Такие стали называют легированными. Для легированных сталей также существует деление на три группы:

  • Низколегированные, с содержанием добавок до 2,5 %;
  • Среднелегированные, которые содержат от 2,5 до 10 % легирующих элементов;
  • Высоколегированные. Содержание легирующих примесей варьируется от 10 до 50 %.

Маркировка сталей отражает наличие и процентное содержание легирующих добавок. При расшифровке каждому элементу соответствует определенная буква, рядом с которой находится цифра, соответствующая его содержанию в процентах. Отсутствие чисел говорит о том, что добавка присутствует в сплаве в количестве менее 1-1,5%. Наличие углерода в составе не отражается, поскольку он входит во все композиции, но его содержание обозначается в самом начале маркировки.

Маркировка может говорить и о назначении сплава. Поскольку в данной классификации также используются буквенные обозначения, то регламентируется порядок их расположения – в начале, середине и конце маркировки.

Определение твердости

Твердость характеризует сопротивление материала большим пластическим деформациям. Наиболее распространенные методы определения твердости связаны с внедрением специального тела – индентора

, в испытуемый материал, с таким усилием, чтобы в материале остался отпечаток индентора. О величине твердости судят по отпечатку.

Твердость наиболее распространенный метод определения свойств материала. Это объясняется рядом причин: определения твердости являются неразрушающим методом, т.к. деталь после такого измерения может быть использована по назначению; испытания на твердость не требуют высокой квалификации и, кроме того, зная твердость, можно судить и о других механических свойствах.

Метод Бринелля.

В качестве индентора используется стальной закаленный шарик, который вдавливается в испытуемый образец на специальном прессе, в результате на поверхности образца образуется отпечаток в виде сферической лунки. Значения твердости – это отношение приложенной нагрузки и площади поверхности отпечатка. Они вычисляются по формуле: НВ=2Р/D(D-(D2-d2) 1/2 ). Здесь НВ – обозначение твердости (например, 200НВ); Р – прилагаемая нагрузка ; D и d – диаметры шарика и отпечатка .

На практике пользуются таблицей, в которой указаны значения твердости в зависимости от диаметра отпечатка.

Метод Бринелля не является универсальным. Он не позволяет испытывать материалы с твердостью более 450НВ, т.к. при этом может деформироваться индентор – шарик, а также образцы толщиной менее 1…2 мм из-за их продавливания.

Между твердостью по Бринеллю и пределом прочности разных материалов соблюдается следующие примерные соотношения: для стали sв=НВ/3, sт=НВ/6; для алюминиевых сплавов; sв=0,362НВ; для медных сплавов sв=0,26НВ.

Метод Роквелла.

Принципиальное отличие этого метода от рассмотренного ранее в том, что твердость определяется не площадью поверхности отпечатка индентора, а глубиной его проникновения в исследуемый образец.


В качестве индентора используют алмазный конус – при испытаниях твердых материалов и стальной закаленный шарик – при испытаниях мягких материалов. Нагрузка при использовании алмазного конуса устанавливается 150 или 60 кгс в зависимости от твердости материала – большая для менее твердых материалов (например, закаленные стали); меньшая для материалов с очень высокой твердостью (твердые сплавы, режущая керамика), чтобы избежать скола алмазного конуса. Стальной шарик вдавливают с нагрузкой 100 кгс.

Испытания выполняются на специальном приборе, имеющем две шкалы – черную и красную. Черная шкала используется при испытаниях алмазным конусом, красная – стальным закаленным шариком. Обозначения твердости: НRC – алмазный конус, нагрузка 150кгс (64НRC), HRA – алмазный конус, нагрузка 60кгс (90HRA), HRB – шарик, нагрузка 100 кгс (120HRB).

Значения твердости в единицах HRC примерно в 10 раз меньше, чем в единицах НВ. Т.е. твердость 30 HRC примерно соответствует 300НВ. Между значениями твердости по шкалам «С» и «А» имеется следующая зависимость: HRC=2HRA-102.

Метод Виккерса.

Метод основан на вдавливании четырехгранной алмазной пирамидки с углом между противоположными гранями, равным 136°. Твердость (она обозначается HV, например,1000HV) определяется отношением нагрузки и площади поверхности отпечатка. Значения твердости вычисляются по формуле: HV=1,854 Р/d2, где d – среднее значение длины диагоналей отпечатка.

Нагрузка может изменяться в пределах от 1 до100 кгс. Величина диагоналей определяется с помощью специального микроскопа, встроенного в прибор.

Определение ударной вязкости.

Разные материалы по-разному реагируют на приложенную к ним внешнюю силу, вызывающую изменение их формы и линейных размеров. Такое изменение называют пластической деформация. Если тело после прекращения воздействия самостоятельно восстанавливает первоначальную форму и линейные размеры — такая деформация называется упругой. Упругость, вязкость, прочность и твердость являются основными механическими характеристиками твердых и аморфных тел и обуславливают изменения, происходящие с физическим телом при деформации под действием внешнего усилия и ее предельном случае — разрушении. Предел текучести материала — это значение напряжения (или силы на единицу площади сечения), при котором начинается пластическая деформация.

Классификация по назначению

Выше уже были приведена классификация видов сталей по назначению. Маркировка конструкционных сталей включает в себя такие обозначения:

  • Строительная – обозначается буквой С и цифрами, характеризующими предел текучести.
  • Подшипниковая – обозначается буквой Ш. Далее идет обозначение и содержание легирующих добавок, в основном, хрома.
  • Инструментальная нелегированная – обозначается буквой У и содержанием углерода в десятых долях процента.
  • Быстрорежущая – обозначается буквой Р и символами легирующих компонентов.
  • Нелегированная конструкционная сталь имеет в обозначении символы Сп и число, показывающее содержание углерода в десятых или сотых долях процента.

Марки стали по прочности таблица

Классификация стали по назначению

Остальные разновидности, в том числе и инструментальные марки из легированных сталей, не имеют специальных обозначений, кроме химического состава, поэтому расшифровку и назначение отдельных видов можно определить только по справочной литературе.

Расчет ПТ

В сопротивлении материалов пределом текучести является напряжение, при котором начинается развиваться пластическая деформация. Давайте рассмотрим, каким образом производится расчет этой величины. В опытах, проводимых с цилиндрическими образцами, определяют значение нормального напряжения в поперечном сечении в момент возникновения необратимой деформации. Таким же методом в опытах с кручением трубчатых образцов производят определение предела текучести при сдвиге. Для большинства материалов этот показатель определяется формулой σТ=τs√3. В некоторых экземплярах непрерывное удлинение цилиндрического образца на диаграмме зависимости нормальных напряжений от относительного удлинения приводит к обнаружению так называемого зуба текучести, то есть резкого снижения напряжения перед образованием пластической деформации.

Более того, дальнейший рост такого искажения до определенного значения происходит при постоянном напряжении, которое называют физическим ПТ. Если площадка текучести (горизонтальный участок графика) имеет большую протяженность, то такой материал называют идеально-пластическим. Если диаграмма не имеет площадки, то образцы называют упрочняющимися. В таком случае невозможно точно указать значение, при котором возникнет пластическая деформация.

Классификация по структуре

Под структурой стали подразумевается внутреннее строение металла, которое может существенно меняться в зависимости от условий термообработки, механических воздействий. Форма и размер зерен зависят от состава и соотношения легирующих добавок, технологии производства.

Основу зерен стали составляет кристаллическая решетка железа, в которую включены атомы примесей – углерода, металлов. Углерод может образовывать твердые растворы в кристаллической решетке, а может создавать с железом химические соединения, карбиды.

Добавки металлов существуют в виде растворов, и многие из них влияют на состояние раствора углерода.

Структура стали меняется при изменениях температуры. Эти изменения называются фазами. Каждая фаза существует в определенном температурном диапазоне, но легирующие добавки могут существенно смещать границы перехода одной фазы в другую.

Насчитывают такие основные фазы состояния металла:

  • Аустенит. Атомы углерода находятся внутри кристаллической решетки железа. Данная фаза существует в диапазоне 1400-700 °С. При наличии в составе от 8 до 10% никеля, аустенитная фаза может сохраняться и при комнатной температуре.
  • Феррит. Твердый раствор углерода в железе.
  • Мартенсит. Пересыщенный раствор углерода. Данная фаза свойственна закаленной стали.
  • Бейнит. Фаза образуется при быстром охлаждении аустенита до температуры 200-500 °С. Характеризуется смесью феррита и карбида железа.
  • Перлит. Равновесная смесь феррита и карбида. Образуется при медленном охлаждении аустенита до температуры 727 °С.

Марки стали по прочности таблица

Фазы строения металла характеризуют его физические свойства, в зависимости от которых определяется класс стали – конструкционная, литейная и так далее.

Предел – прочность – сталь

Это почти вдвое выше предела прочности стали 3; стержень выйдет из строя гораздо раньше, чем будет достигнуто критическое напряжение. Как мы видим, при небольших гибкостях формула Эйлера дает преувеличенные значения критических напряжений и критических сил.  

Влияние коррозии с ростом предела прочности стали усиливается. На рис. 9 приведена зависимость пределов выносливости лабораторных образцов от предела прочности стали для различных коррозионных сред. Анализ графиков показывает, что предел выносливости в условиях коррозии не зависит от предела прочности стали, вследствие чего применение легированных сталей при работе детали в коррозионной среде нецелесообразно. Существенно снижается предел выносливости и в том случае, когда образцы подвергаются коррозии до испытания на усталость в течение нескольких дней, после чего их испытывают на усталость без воздействия среды.  

Как видно из кривой, предел прочности стали с увеличением времени испытания уменьшается.  

С увеличением содержания углерода повышается предел прочности стали, твердость и хрупкость при одновременном уменьшении относительного удлинения и ударной вязкости. Свариваемость стали с повышением содержания углерода ухудшается.  

Предыдущий анализ показывает, что предел прочности стали при растяжении оказывает преобладающее влияние на предел выносливости при наличии концентрации напряжений. Оказывается, что прочие факторы, такие, как горячая обработка, состав и качество стали, имеют весьма малое дополнительное влияние по сравнению с влиянием предела прочности при растяжении. Интересно знать, какая величина предела прочности при растяжении обеспечила бы максимальную выносливость при наличии концентрации напряжений. Соотношения, данные выше, показывают, что существует непрерывное, хоть и малое, увеличение предела выносливости в условиях концентрации напряжений при росте предела прочности при растяжении.  

Существует мнение, что произведение предела прочности стали на ее относительное сужение можно рассматривать как предел выносливости. При проверке влияния этого показателя на износостойкость стали при ударно-абразивном изнашивании также получены различные зависимости в хрупкой и вязкой областях разрушения. При равномерном увеличении произведения aBty износостойкость стали в хрупкой области разрушения увеличивается, в вязкой области – уменьшается.  

По многочисленным данным коэффициенты вариации предела прочности сталей о0в колеблются в предела 3 – 12 %, а распределение величин 0В на множестве всех плавок достаточно хорошо соответствует нормальному закону.  

Сопоставление твердости и предела прочности армло-железа и стали с 0 3п / о С при.  

Между числом твердости Бринеля и пределом прочности стали для испытаний при комнатной температуре с достаточной степенью точности установлено определенное соотношение.  

По данным работы и др. предел прочности стали при поглощение водорода ненагруженными образцами несколько снижается. Результаты наших испытаний , описанные в главе V, показала существенное снижение предела прочности стали в результате на-водороживания образцов без нагрузки в сероводородных растворах.  

Механические свойства хромоникелевых сталей с кремнием.  

При температуре отжига выше 980 С предел прочности стали 27 – 4 – Мо увеличивается, а ударная вязкость резко снижается, что объясняется образованием игольчатого аустенита во время охлаждения. При 760 С ударная вязкость снижается в результате образования ог-фазы.  

Зависимость Ке и К е от температуры для легированной стали ( 17, Кавг.  

С понижением температуры предел текучести и предел прочности стали возрастают, причем 0Т увеличивается интенсивнее, так что отношение ат / сгв стремится к единице при снижении температуры до – 180 С.  

По данным работы и др. предел прочности стали при поглощение водорода ненагруженными образцами несколько снижается. Результаты наших испытаний , описанные в главе V, показала существенное снижение предела прочности стали в результате на-водороживания образцов без нагрузки в сероводородных растворах.  

Классификация по качеству

Легированная и нелегированная сталь в пределах каждой марки отличается качеством, которое зависит от технологии производства и качества исходных материалов.

На качество стали особо влияют примеси, которые остаются в ней при восстановлении железа из рудных концентратов. В основном негативно влияют на качество стали фосфор и сера. По их содержанию классифицируют стали обыкновенного качества и высококачественную, в конце обозначения которой присутствует буква А. Содержание фосфора в высококачественной стали не превышает 0,025 %.

Высокопрочные стали Strenx: описание

Высокопрочная сталь Strenx* (до 2015 года — сталь Weldox)
– это конструкционная сталь с гарантированной точностью толщины и плоскостности по всей площади листового проката. Данная марка была разработана швейцарской компанией SSAB для производства комплектующих тяжелых машин и инструмента, к прочности и износостойкости которых предъявляют повышенные требования. Кроме того, перед специалистами SSAB стояла задача получить высокопрочную сталь наряду со снижением ее массы: используя для производства металлоизделий марки Strenx можно добиться снижения их веса до 40%.

Главное преимущество марок Strenx – это предел прочности достигающий феноменальных 1100 Мпа за счет специальной концепции легирования и уменьшения вредных примесей в химическом составе. Выпускается сталь в листах, полосах, рулонах.

Регламентируют стали Стренкс несколько основных стандартов*:

  • EN 10025-6 / EN 10149-2 – химический состав, механические свойства и контрольные испытания;
  • EN 10029 / EN 10051 – технические допуски по форме, толщине, плоскостности;
  • EN 10163-2 класс А подкласс 3 – технические допуски на качество поверхности.

*

Для каждой группы марок стали могут быть указаны дополнительные отраслевые стандарты.

Классификация по способу раскисления

При выплавке стали в ней остается некоторое количество кислорода в составе окислов железа. Для снижения количества кислорода и восстановления железа из окислов применяется реакция раскисления, при которой в расплавленный металл добавляют соединения, более активные по взаимодействию с кислородом, чем железо. Во время реакции высвободившийся кислород также реагирует с углеродом, в результате чего образуется углекислый газ, который выделяется в виде пузырьков.

В зависимости от количества раскислителей и продолжительности процесса можно выделить три вида итогового сплава:

  • Кипящая сталь. В результате минимального использования присадок и времени реакции увеличен выход готовой продукции, которая, при этом отличается низким качеством;
  • Спокойная сталь. Металл, в котором полностью прошли процессы раскисления. Отличается высоким качеством, но дорога в производстве в связи с высокой стоимостью реагентов и сниженным выходом продукта;
  • Полуспокойная сталь. Промежуточный вариант с оптимальным сочетанием качества и стоимости.

При изготовлении ассортимента марок стали из металла разной степени раскисления применяется специальная маркировка материалов, соответственно символами «сп», «кп» и «пс».

Предел текучести труб

Наиболее наглядным является влияние данной величины при строительстве трубопроводов систем высокого давления. В таких конструкциях должна использоваться специальная сталь, у которой достаточно большие пределы текучести, а также минимальные показатели разрыва между данным параметром и пределом прочности. Чем больше у стали предел, тем, естественно, более высоким должен быть показатель допустимой величины рабочего напряжения. Данный факт оказывает прямое влияние на значение прочности стали, и соответственно, всей конструкции в целом

В связи с тем что параметр допустимой расчетной величины системы напряжений оказывает непосредственное влияние на необходимое значение толщины стен в используемых трубах, то важно максимально точно рассчитывать характеристики прочности стали, которая будет использоваться при изготовлении труб. Одним из наиболее аутентичных методов определения данных параметров является проведение исследования на разрывном образце

Во всех случаях требуется учитывать разницу значений рассматриваемого показателя, с одной стороны, и допустимыми значениями напряжений — с другой.

Кроме того, следует знать, что предел текучести металла всегда устанавливается в результате проведения детальных многоразовых замеров. А вот систему допустимых напряжений в подавляющем большинстве принимают исходя из нормативов или вообще в результате проведенных технических условий, а также опираясь на личный опыт производителя. В системах магистральных трубопроводов весь нормативный сборник описан в СНиП II-45—75. Итак, установка коэффициента запаса прочности — довольно сложная и весьма важная практическая задача. Корректное определение этого параметра всецело зависит от точности рассчитанных величин напряжения, нагрузки, а также предела текучести материала.

При выборе теплоизоляции систем трубопроводов также опираются на данный показатель. Это связано с тем, что эти материалы непосредственно вступают в контакт с металлической основой трубы, и, соответственно, могут принимать участие в электрохимических процессах, пагубно влияющих на состояние трубопровода.

Маркировка сталей по российским стандартам

Маркировка сталей по российским стандартам позволяет определить состав металла и, частично, принадлежность к определенному виду.

Марки стали по прочности таблица

При наличии углерода в стали более 1 %, его количество в маркировке не указывается. Марка стали включает буквенные обозначения легирующих добавок с указанием их количества в десятых и сотых долях процента, но если содержание компонента менее 1,5 %, то в маркировке присутствует только буквенное обозначение.

Читать также: Станки для сувальдных ключей

Кроме химического состава, маркировка содержит символы, характеризующие назначение стали, степень ее качества.

Состав стальных сплавов

Свойства металла зависят от сформированной кристаллической решетки, которая, в свою очередь, определяется содержанием углерода. Зависимость типов решетки от количества углерода хорошо прослеживается на структурной диаграмме. Если, например, в решетке стали насчитывается до 0.06% углерода, то это классический феррит, который имеет зернистую структуру. Такой материал непрочный, но текучий и имеет большой предел ударной вязкости.

По структуре стали делятся на:

  • ферритную;
  • перлитно-ферритовую;
  • цементитно-ферритную;
  • цементитно-перлитовую;
  • перлитную.

Добавки углерода и прочность

Закон аддитивности подтверждается процентными изменениями цементита и феррита в стали. Если количество углеродной добавки составляет около 1,2%, то предел текучести стального материала увеличивается и повышается твердость, прочность и температуростойкость. При последующем увеличении содержания углерода технические параметры ухудшаются. Сталь плохо сваривается и неохотно поддается штамповке. Самым лучшим образом при сварке ведут себя сплавы с небольшим содержанием углерода.

Марганец и кремний

В виде добавки, чтобы увеличить степень раскисления, дополнительно добавляют марганец. Кроме того, этот элемент уменьшает вредное воздействие серы. Содержание марганца обычно не более 0.8% и он не влияет на технологические свойства сплава. Присутствует как твердый компонент.

Кремний тоже особо не влияет на характеристики металла. Он необходим для увеличения качества сварки деталей. Содержание этого элемента не превышает 0.38% и он добавляется во время процесса раскисления.

Сера и фосфор

Сера содержится в виде хрупких сульфитов. Повышенное количество этого элемента влияет на механические показатели сплава. Чем больше серы, тем хуже пластичность, текучесть и вязкость сплава. Если превышен предел в 0.06%, то изделие сильнее подвержено коррозии и становится способным к сильному истиранию.

Наличие фосфора увеличивает показатель текучести, но при этом уменьшается пластичность и вязкость. В общем, завышенное содержание фосфора значительно ухудшает качество металла. Особенно вредно сказывается на характеристиках совместное высокое содержание фосфора и углерода. Допустимыми пределами содержания фосфора считаются значения от 0.025 до 0.044%.

Азот и кислород

Это неметаллические примеси, которые понижают механические свойства сплава. Если содержание кислорода больше чем 0.03%, то металл быстрее стареет, падают значения пластичности и вязкости. Азотные добавки увеличивают прочность, но в этом случае предел текучести уменьшается. Увеличенное содержание азота делает сталь ломкой и способствует быстрому старению металлической конструкции.

Поведение легирующих добавок

Для улучшения всех физических показателей стали, в сплав добавляют специальные легирующие элементы. Такими добавками могут быть вольфрам, молибден, никель, хром, титан и ванадий. Совместное добавление в необходимых пропорциях, дает самые приемлемые результаты.

Маркировка сталей по американской и европейской системам

Маркировка сталей отечественного производства и на постсоветском пространстве позволяет приблизительно определить состав, назначение и характеристики, не прибегая к справочной литературе. В американских и европейских стандартах такая расшифровка, по большей части, отсутствует. Это связано с большим количеством организаций, занимающихся стандартизацией металлопродукции.

По большей части обозначение стали по американским и европейским стандартам не содержит указаний на химический состав. Виды стали по назначению характеризуются буквенным или цифровым кодом, который можно расшифровать при помощи справочной литературы.

Только в европейском стандарте EN10027 существует вариант маркировки сплавов по химическому составу, который имеет близкое сходство с отечественными обозначениями.

Обозначения легирующих элементов

Для того чтобы по маркировке стали узнать качественный и количественный состав, для легирующих элементов используют буквенные обозначения. В основном, русские буквы соответствуют названиям элементов, хотя встречаются исключения, поскольку есть элементы, которые начинаются с одинаковых букв. Таблица легирующих элементов выглядит следующим образом.

Обозначение легирующих элементов в сталях

ВВольфрамБНиобий
ККобальтЕСелен
ММолибденРБор
ННикельФВанадий
ТТитанЦЦирконий
ХХромЮАлюминий
ГМарганецААзот
ДМедьСКремний

Как видно из таблицы, в ней присутствуют два неметалла – кремний и азот, а углерода нет. Наличие углерода подразумевается в составе любой стали, поэтому в обозначении указывается лишь его содержание

Цветовая маркировка

Цветовая маркировка сталей применяется для обозначения проката. Это удобно при хранении материалов на складах, транспортировке. Обозначение сталей производится метками в виде точек или полос, выполненных несмываемой краской. Цвет обозначений выбирается из таблицы согласно назначениям стали. При этом группа стали и степень ее раскисления не учитываются.

Марки стали по прочности таблица

Пример цветовой маркировки стали

Испытание сталей

Чтобы полностью изучить свойства материала и определения предела текучести, пластических деформаций и прочности проводят испытание образцов металла до полного разрушения. Испытание проводят при действии нагрузок следующего вида:

  • статической нагрузкой;
  • циклической категории (на выносливость или усталость);
  • растяжение;
  • изгиб;
  • кручение;
  • реже на сочетающиеся нагрузки, например, изгиб и растяжение.

Определение пределов испытательных нагрузок производят в стандартных условиях, с применением специальных машин, которые описаны в правилах Государственных стандартов.

Испытание образца для определения предела текучести

Для этого берут образец цилиндрической формы размером 20 мм, расчетной длиной 10 мм и применяют к нему нагрузку растяжением. Понятие расчетной длины обозначает расстояние между рисками, нанесенными на более длинном образце для возможности захвата. Для проведения испытания определяют зависимость между увеличением растягивающей силы и удлинением испытательного образца. Все показания испытания автоматически отображаются в виде диаграммы для наглядного сравнения. Ее называют диаграммой условного растяжения или условного напряжения, график зависит от первоначального сечения образца и первоначальной его длины. Вначале увеличение силы приводит к пропорциональному удлинению образца. Такое положение действует до предела пропорциональности.

После достижения этого порога график становится криволинейным и обозначает непропорциональное увеличение длины при равномерном повышении нагрузки. Дальше следует определение предела текучести. До тех пор, пока напряжения в образце не превосходят этого показателя, то материал с прекращением нагрузки может вернуться в первоначальное состояние относительно размеров и формы. На практике испытательного процесса разница между этими пределами невелика и не стоит особого внимания.

Предел текучести

Если продолжать увеличивать нагрузку, то наступает такой момент испытания, когда изменение формы и размеров продолжается без увеличения силы. На диаграмме это показывается горизонтальной прямой (площадкой) текучести. Фиксируется максимальное напряжение, при котором увеличивается деформация, после прекращения наращивания нагрузки. Этот показатель называется пределом текучести. Для стали Ст. 3 предел текучести от 2450 кг на квадратный сантиметр.

Условный предел текучести

Многие металлы при испытании дают диаграмму, на которой площадка текучести отсутствует или плохо выражена, для них применяется понятие условного предела текучести. Это понятие определяет напряжение, которое вызывает остаточное изменение или деформацию в пределе 0,2%. Металлами, к которым применяется понятие условного предела текучести, служат легированные и высокоуглеродистые стали, бронза, дюралюминий и другие. Чем пластичнее сталь, тем больше показание остаточных деформаций. К ним относят алюминий, латунь, медь и низкоуглеродистые стали. Испытания стальных образцов показывает, что текучесть металла вызывает значительные сдвиги кристаллов в решетке, и характеризуется появлением на поверхности линий, направленные к центральной оси цилиндра.

Предел прочности

После изменения на некоторую величину происходит переход образца в новую фазу, когда после преодоления предела текучести, металл снова может сопротивляться растяжению. Это характеризуется упрочнением, и линия диаграммы снова поднимается, хотя повышение происходит в более пологом проявлении. Появляется временное сопротивление постоянной нагрузке.

После достижения максимального напряжения (предела прочности) на образце появляется участок резкого сужения, так называемой шейки, характеризующейся уменьшением площади поперечного сечения, и образец рвется в самом тонком месте. При этом значение напряжения резко падает, уменьшается и величина силы.

Сталь Ст.3 характеризуется пределом прочности 4000–5000 кГ/см2. Для высокопрочных металлов такой показатель достигает предела 17500 кГ/см3 этот.

Пластичность материала

Характеризуется двумя показателями:

  • остаточное относительное удлинение;
  • остаточное сужение при разрыве.

Для определения первого показателя измеряют общую длину растянутого образца после разрыва. Чтобы это сделать, складывают две половинки друг с другом. Измерив длину, высчитывают процентное отношение к первоначальной длине. Прочные сплавы менее подвержены пластичности и показатель относительного удлинения снижается до 63 эта11%.

Вторая характеристика рассчитывается после измерения наиболее узкой части разрыва и высчитывается в процентном отношении к первоначальной площади среза образца.

Примеры расшифровки маркировки

Для того чтобы расшифровка была понятнее, следует привести некоторые, наиболее яркие примеры маркировки. На основании примеров, определение марки стали в сравнении с уже известными, будет являться несложной задачей. Вот некоторые виды стали с расшифровкой условных обозначений:

  • 30ХГСА – расшифровка марки стали говорит о том, что в сплаве содержится 0,3 % углерода, о чем свидетельствует цифра в начале обозначения. Сталь содержит хром (Х), марганец (Г), кремний (С), но их содержание менее 1,5 %. Символ «А» в конце обозначения говорит о том, что сталь высококачественная.
  • У8ГА – инструментальная сталь с содержанием углерода 0,8 %. Высококачественная с добавлением марганца.
  • Р6М5Ф2К8 – быстрорежущая сталь. Содержит 5 % молибдена, 2 % ванадия, 8 % кобальта. Хром содержится во всех быстрорежущих сталях в количестве около 4 %, поэтому в обозначение не входит. Вольфрам также всегда присутствует, но его содержание может изменяться, поэтому в данной марке его количество составляет 6 %.
  • Ст3сп5 – сталь конструкционная нелегированная, полностью раскисленная – спокойная, 5-й категории, то есть может применяться для изготовления несущих сварных конструкций.
  • ХВГ – сталь ХВГ имеет в составе хром, вольфрам и марганец в количестве около 1 % и дополнительные легирующие элементы, но их содержание меньше 0,5 %.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Стали и прочность крепежа

Машиностроительный крепёж может иметь различное назначение и выполнять самые разные задачи – от простого формирования целостности конструкции до восприятия основной несущей силовой нагрузки на конструкцию. Чем больше нагрузка на крепёж, тем более высокой прочностью он должен обладать.

В зависимости от назначения и области применения крепёж изготавливают различных классов прочности, соответственно из разных марок сталей. Нет никакой надобности использовать высокопрочные болты для крепления, скажем, козырька на киоске, и напротив – совсем недопустимо использовать болты обычного, низкого, класса прочности в ответственных конструкциях башенных или козловых кранов – здесь применяются исключительно высокопрочные болты по ГОСТ 7817-70 – отсюда и народное название таких болтов «крановые болты». Желание сэкономить и использовать обычные болты – подешевле, или «крановые болты», но изготовленные из низкопрочных сталей, приводит к зрелищным новостям по телевизору с падающим краном в центре внимания.

Для различных видов крепежа (болты, винты, гайки, шпильки) используются разные стали, разные классы прочности и различная их маркировка.

Болты, винты и шпильки

Болты, винты и шпильки производятся из различных углеродистых сталей разным сталям соответствуют разные классы прочности. Хотя, иногда можно из одной и той же стали изготовить болты различных классов прочности, используя при этом разные способы обработки заготовки или дополнительную термическую обработку – закалку.

Например, из Стали 35 можно изготовить болты нескольких классов прочности: класса прочности 5.6 – если изготовить болты методом точения на токарном и фрезерном станке: классов 6.6 и 6.8 – получатся при изготовлении болтов методом объёмной штамповки на высадочном прессе; и класса 8.8 – если полученные перечисленными способами болты подвергнуть термической обработке – закалке.

Класс прочности для болтов, винтов и шпилек из углеродистых сталей обозначают двумя цифрами через точку. Утверждённый прочностной ряд для болтов, винтов и шпилек из углеродистых сталей содержит 11 классов прочности:

3.6; 4.6; 4.8; 5.6; 5.8; 6.6; 6.8; 8.8; 9.8; 10.9; 12.9

Первая цифра маркировки класса прочности болта обозначает 0,01 часть номинального временного сопротивления – это предел прочности на растяжение – измеряется в МПа (мегапаскалях) или Н/мм² (ньютонах на миллиметр квадратный). Также первая цифра маркировки класса прочности обозначает ≈0,1 часть номинального временного сопротивления, если Вы измеряете предел прочности на растяжение в кгс/мм² (килограммах-силах на миллиметр квадратный).

Пример: Шпилька класса прочности 5.8: Определяем предел прочности на растяжение

5/0,01=500 МПа (или 500 Н/мм²; или ≈50 кгс/мм²)

Вторая цифра обозначает 0,1 часть отношения предела текучести (напряжения, при котором уже начинается пластическая деформация) к номинальному временному сопротивлению (пределу прочности на растяжение) – таким образом для шпильки класса прочности 10.9 второе число означает, что у шпильки, относящейся к этому классу, минимальный предел текучести будет равен 90% от значения предела прочности на растяжение, то есть будет равен: (10/0,01)×(9×0,1)=1000×0,9=900 МПа (или Н/мм²; или ≈90 кгс/мм²)

Пример: Шпилька класса прочности 5.8: Определяем предел текучести

500х0,8=400 МПа (или 400 Н/мм²; или ≈40 кгс/мм²)

Значение предела текучести – это максимально допустимая рабочая нагрузка болта, винта или шпильки, при превышении которой происходит невосстанавливаемая деформация. При расчётах нагрузки на болты, винты или шпильки используют 1/2 или 1/3 от предела текучести, то есть, с двукратным или трёхкратным запасом прочности соответственно.

Классы прочности и марки сталей для болтов, винтов и шпилек

Класс прочностиМарка сталиГраница прочности, МПаГраница текучести, МПаТвердость по Бринеллю, HB
3.6Ст3кп, Ст3сп, Ст5кп, Ст5сп300…330180…19090…238
4.6Ст5кп, Ст.10400240114…238
4.8Ст.10, Ст.10кп400…420320…340124…238
5.6Ст.35500300147…238
5.8Ст.10, Ст.10кп, Ст.20, Ст.20кп500…520400…420152…238
6.6Ст.35, Ст.45600360181…238
6.8Ст.20, Ст.20кп, Ст.35600480181…238
8.8Ст.35, Ст.45, Ст.35Х, Ст.38ХА, Ст.20Г2Р800*640*238…304*
8.8Ст.35, Ст.35Х, Ст.38ХА, Ст.40Х, Ст.20Г2Р800…830**640…660**242…318**
9.8*Ст.35, Ст.35Х, Ст.45, Ст.38ХА, Ст.40Х, Ст.30ХГСА, Ст.35ХГСА, Ст.20Г2Р900720276…342
10.9Ст.35Х, Ст.38ХА, С.45, Ст.45Г, Ст.40Г2, Ст.40Х, Ст.40Х Селект, Ст.30ХГСА, Ст.35ХГСА,1000…1040900…940304…361
12.9Ст.30ХГСА, Ст.35ХГСА, Ст.40ХНМА1200…12201080…110366…414

Читать также: Селективность автоматических выключателей пуэ

В таблице приведены самые распространённые в метизном производстве и рекомендованные марки сталей, но в различных особых случаях также применяются и другие стали, когда их применение продиктовано дополнительными требованиями к крепежу.

Значками помечено в таблице:

* применительно к номинальным диаметрам до 16 мм.

** применительно к номинальным диаметрам больше,чем 16 мм.

Существуют специальные стандарты на высокопрочные болты узкоотраслевого применения, имеющие свою градацию прочности. Например, стандарты на высокопрочные болты с увеличенным размером «под ключ», применяемые в мостостроении – так называемые «мостовые болты»: ГОСТ 22353-77 и российский стандарт ГОСТ Р 52644-2006.

Прочность болтов согласно этих стандартов обозначается значением временного сопротивления на разрыв (границы прочности) в кгс/см²: то есть, 110, 95, 75 и т.д.

Такие болты могут производиться в двух исполнениях:

  • Исполнение У – для климатических областей с максимально низкой температурой до -40 0 С – буква У не обозначается в маркировке
  • Исполнение ХЛ – для климатических областей с максимально низкой температурой от -40 0 С до -65 0 С – обозначается в маркировке на головке болта после класса прочности
Резьба болтовКласс прочности болтовМарка сталиГраница прочности, МПа (кгс/см²)Относит. удлинение, %Ударная вязкость болтов исполнения ХЛ, МДж/м² (кгс·м/см²)Макс. твердость по Бринеллю, HB
М16. М2711040Х Селект1100 (110)…1350 (135)минимум 8минимум 0,5 (5)

В производстве высокопрочных болтов по данным стандартам используются также стали 30Х3МФ, 30Х2АФ и 30Х2НМФА. Применение таких сталей позволяет добиться ещё более высокой прочности.

Маркировка прочности болтов, винтов, шпилек

Система маркировки метрического крепежа разработана инженерами ISO (International Standard Organization – Международная Организация Стандартов). Советские, российские и украинские стандарты опираются именно на эту систему.

Маркировке подлежат болты и винты с диаметром резьбы свыше 6 мм. Болты и винты диаметром менее 6 мм маркировать необязательно – производитель может наносить маркировку по собственной инициативе.

Необходимо отметить, что среди винтов маркируются только винты, имеющие шлиц под шестигранный ключ, с различной формой головки: с цилиндрической, с полукруглой и с потайной головкой. Винты со всеми типами головки, имеющие крестовой или прямой шлиц, не маркируются обозначением класса прочности.

Необходимо также отметить, что не маркируются болты и винты изготовленные методом резания, точения (т.е. не штамповкой) – в этом случае маркировка класса прочности возможна по дополнительному требованию Заказчика.

Знаки маркировки наносят на торцевой или боковой поверхности головки болта или винта. Если знаки наносятся на боковую поверхность головки, то они должны быть углубленными. Допускается маркировка выпуклыми знаками, при этом увеличение высоты головки болта или винта не должно превышать:

  • 0,1 мм – для изделий с диаметром резьбы до 8 мм;
  • 0,2 мм – для изделий с диаметром резьбы от 8 мм до 12 мм;
  • 0,3 мм – для изделий с диаметром резьбы свыше 12 мм

Болты и винты с шестигранной и звездообразной головкой (в том числе изделия с фланцем) маркируют товарным знаком изготовителя и обозначением класса прочности. Данная маркировка наносится на верхней части головки выпуклыми или углубленными знаками; может также наноситься на боковой части головки углубленными знаками. Для болтов и винтов с фланцем, если в процессе производства невозможно нанести маркировку на верхней части головки, маркировку наносят на фланце.

Болты с полукруглой головкой и квадратным подголовником по ГОСТ 7802-80 классов прочности 8.8 и выше маркируют знаком производителя и обозначением класса прочности.

Символы маркировки классов прочности болтов и винтов под шестигранный ключ, приведены в следующей таблице:

Если данные символы невозможно нанести из-за формы головки или ее малых размеров, применяются символы маркировки по системе циферблата. Эти символы приведены в следующей таблице:

Также, в отдельных случаях, на головке болта может маркироваться сталь из которой изготовлен болт. Показан пример болта из Стали 40Х.

Шпильки маркируют цифрами класса прочности только с диаметром резьбы свыше 12 мм. Так как маленькие диаметры шпилек затруднительно маркировать с помощью цифровых клейм, то допускается маркировать такие шпильки, с диаметрами резьбы М8, М9, М10, М11, используя альтернативные знаки, приведенные на рисунке. Знаки наносят на торце гаечного конца шпильки.

Шпильки маркируют клеймением с углубленными знаками и нанесением обозначения класса прочности c товарным знаком производителя на безрезьбовом участке шпильки. Маркировке подлежат шпильки классов прочности 5.6, 8.8 и выше.

Гайки

Класс прочности для гаек из углеродистых сталей нормальной высоты (Н≈0,8d), гаек высоких (Н≈1,2d) и особо высоких (Н≈1,5d) обозначается одним числом. Утверждённый прочностной ряд содержит семь классов прочности:

Это число обозначает 1/100 часть предела прочности болта с которым в паре должна компоноваться гайка в резьбовом соединении. Такое сочетание болта и гайки называется рекомендуемым и позволяет равномерно распределить нагрузку в резьбовом соединении.

Например, гайка класса прочности 8 должна компоноваться с болтом, у которого предел прочности не менее, чем:

8 х 100 = 800 МПа (или 800 Н/мм²; или ≈80 кгс/мм²)

Следовательно, можно использовать болты классов прочности 8.8; 9.8; 10.9; 12.9 – оптимальной будет пара с болтом класса прочности 8.8.

Классы прочности и марки сталей для гаек нормальной высоты, гаек высоких и гаек особо высоких

М3095950 (95). 1150 (115)363
М3675750 (75). 950 (95)
М4265650 (65). 850 (85)
М4860600 (60). 800 (80)
Класс прочностиМарка сталиГраница прочности, МПаТвердость по Бринеллю, HB
4Ст3кп, Ст3сп, Ст.5, Ст.5кп, Ст.20510112…288
5Ст.10, Ст.10кп, Ст.20, Ст.20кп520…630124…288
6Ст.10, Ст.10кп, Ст.20, Ст.20кп, Ст.35, ст.45, ст.40Х600…720138…288
8Ст.35, Ст.45, Ст.20Г2Р, Ст.40Х800…920162…288
9Ст.35Х, Ст.38ХА, Ст.45, Ст.40Х1040…1060180…288
10Ст.35Х, Ст.38ХА, Ст.45, Ст.40Х, Ст.30ХГСА, Ст.40ХНМА900…920260…335
12Ст.30ХГСА, Ст.40ХНМА1150…1200280…335

Правило подбора гаек к болтам заключается в сохранении целостности резьбы гайки, навинченной на болт, при приложении пробной испытательной нагрузки – попросту говоря, при испытаниях гайку не должно «сорвать» от испытательной нагрузки для выбранного болта.

При подборе классов прочности болтов и гаек, сопрягаемых в резьбовом соединении, можно пользоваться следующей таблицей согласно ГОСТ 1759.4-87:

Пределы прочности материалов

Быстрый поиск

Определённая пороговая величина для конкретного материала, превышение которой приведёт к разрушению объекта под действием механического напряжения. Основные виды пределов прочности: статический, динамический, на сжатие и на растяжение. Например, предел прочности на растяжение — это граничное значение постоянного (статический предел) или переменного (динамический предел) механического напряжения, превышение которого разорвет (или неприемлемо деформирует) изделие. Единица измерения — Паскаль , Н/мм ² = .

Предел текучести (σт)

Величина механического напряжения, при которой деформация продолжает увеличиваться без увеличения нагрузки; служит для расчётов допустимых напряжений пластичных материалов.

После перехода предела текучести в структуре металла наблюдаются необратимые изменения: кристаллическая решетка перестраивается, появляются значительные пластические деформации. Вместе с тем происходит самоупрочнение металла и после площадки текучести деформация возрастает при увеличении растягивающей силы.

Нередко этот параметр определяют как «напряжение, при котором начинает развиваться пластическая деформация» , таким образом, отождествляя пределы текучести и упругости. Однако следует понимать, что это два разных параметра. Значения предела текучести превышают предел упругости ориентировочно на 5%.

Предел выносливости или предел усталости (σR)

Способность материала воспринимать нагрузки, вызывающие циклические напряжения. Этот прочностной параметр определяют как максимальное напряжение в цикле, при котором не происходит усталостного разрушения изделия после неопределенно большого количества циклических нагружений (базовое число циклов для стали Nb = 10 7). Коэффициент R (σR) принимается равным коэффициенту асимметрии цикла. Поэтому предел выносливости материала в случае симметричных циклов нагружения обозначают как σ-1, а в случае пульсационных — как σ0.

Отметим, что усталостные испытания изделий очень продолжительны и трудоёмки, они включают анализ больших объёмов экспериментальных данных при произвольном количестве циклов и существенном разбросе значений. Поэтому чаще всего используют специальные эмпирические формулы, связывающие предел выносливости с другими прочностными параметрами материала. Наиболее удобным параметром при этом считается предел прочности.

Для сталей предел выносливости при изгибе как правило составляет половину от предела прочности: Для высокопрочных сталей можно принять:

Для обычных сталей при кручении в условиях циклически изменяющихся напряжений можно принять:

Приведённые выше соотношения стоит применять осмотрительно, потому что они получены при конкретных режимах нагружения, т.е. при изгибе и при кручении. Однако, при испытании на растяжение-сжатие предел выносливости становится примерно на 10—20% меньше, чем при изгибе.

Предел пропорциональности (σ)

Максимальная величина напряжения для конкретного материала, при которой ещё действует закон Гука, т.е. деформация тела прямо пропорционально зависит от прикладываемой нагрузки (силы)

Обратите внимание, что для множества материалов достижение (но не превышение!) предела упругости приводит к обратимым (упругим) деформациям, которые, впрочем, уже не прямо пропорциональны напряжениям. При этом такие деформации могут несколько «запаздывать» относительно роста или снижения нагрузки

Диаграмма деформации металлического образца при растяжении в координатах удлинение (Є) — напряжение (σ).

1:Предел абсолютной упругости.

2:Предел пропорциональности.

3:Предел упругости.

4:Предел текучести. (σ 0.2)

www.smalley.ru

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]