Понятие о металлургии: общие способы получения металлов


Понятие о металлургии

Металлургия — получение металлов из руд — один из древнейших видов человеческой деятельности. Еще во втором тысячелетии до н. э. в Египте умели выплавлять железо из железной руды. Так называемый железный век пришел на смену бронзовому, тот, в свою очередь, наступил после каменного.

Получают металлы из рудных полезных ископаемых. Например, халькопирит или медный колчедан — сырье для производства железа, меди и серы (Рис. 1). Химическая формула минерала CuFeS2. Металлы в составе других руд находятся в виде оксидов или солей неорганических кислот, химически связанных катионов.

Рис. 1. Халькопирит

Суть металлургического процесса заключается в восстановлении положительных ионов до свободных атомов металла. Используют в качестве источников электронов углерод и его соединения, водород, металлы. В процессе восстановления катионы получают недостающие электроны. Происходит восстановление электронных оболочек металла. Схема процесса:

Ме+n + ne- → Me, где

  • Ме+n — металл в окисленной форме;
  • +n — степень окисления;
  • ne- — количество присоединяемых электронов;
  • Ме — металл в восстановленной форме.

Выщелачивание

Выщелачивание включает использование водных растворов для извлечения металла из металлосодержащих материалов, который контактирует с материалом, содержащим ценный металл.[3] Первые образцы происходят из Германии и Испании 17 века, где его применяли для добычи меди.[4]

В выщелачивающий Условия раствора меняются с точки зрения pH, окислительно-восстановительного потенциала, присутствия хелатирующих агентов и температуры, чтобы оптимизировать скорость, степень и селективность растворения желаемого металлического компонента в водной фазе. За счет использования хелатирующие агентыможно выборочно извлекать определенные металлы. Такие хелатирующие агенты обычно представляют собой амины базы шиффа.[5]

Пять основных конфигураций реактора выщелачивания: на месте, в куче, чане, резервуаре и автоклаве.

Выщелачивание на месте

Выщелачивание на месте также называется «добычей решений». Первоначально этот процесс включает бурение скважин в залежи руды. Взрывчатые вещества или гидроразрыв используются для создания открытых путей внутри отложения для проникновения раствора. Раствор для выщелачивания закачивается в залежь, где он контактирует с рудой. Затем раствор собирается и обрабатывается. В Урановое месторождение Беверли является примером выщелачивания на месте, а также троянской шахтой в Зимбабве.[нужна цитата

]

Кучное выщелачивание

В процессах кучного выщелачивания дробленая (а иногда и агломерированная) руда складывается в кучу, покрытую непроницаемым слоем. Выщелачивающий раствор распыляется поверх кучи, и ему дают просачиваться вниз через кучу. Конструкция отвала обычно включает в себя отстойники, которые позволяют перекачивать «насыщенный» выщелачивающий раствор (т.е. раствор с растворенными ценными металлами) для дальнейшей обработки. Примером является цианирование золота, где пылевидные руды извлекаются раствором цианид натрия, который в присутствии воздуха растворяет золото, оставляя недрагоценный осадок.

Шариковая модель комплексного аниона ауроцианида или дицианоаурата (I), [Au (CN)2]−.[6]

Выщелачивание НДС

Выщелачивание НДС включает контактирование материала, который обычно подвергается измельчению и классификации, с выщелачивающим раствором в больших чанах.

Выщелачивание резервуаров

Бак с мешалкой, также называемое выщелачиванием с перемешиванием, включает контактирование материала, который обычно подвергается измельчению и классификации, с выщелачивающим раствором в резервуарах с мешалкой. Перемешивание может улучшить кинетику реакции за счет увеличения массопереноса. Резервуары часто имеют последовательную конфигурацию реакторов.

Выщелачивание в автоклаве

Автоклав реакторы используются для реакций при более высоких температурах, что может увеличить скорость реакции. Точно так же автоклавирование позволяет использовать в системе газообразные реагенты.

Способы получения металлов

В зависимости от того, кокой восстановитель используют в металлургическом процессе различают: пиро — , гидро, электро — и биометаллургию.

Наиболее распространенные способы получения металлов: пирометаллургический и электрометаллургический. Большинство реакций восстановления протекают при высоких температурах (Рис. 2). Так как металлическая связь обладает повышенной прочностью, то выделение металлов в чистом виде из природных соединений проводят при высоких температурах.

Рис. 2. Металлургическое производство

Пирометаллургический способ

Пирометаллургия — получение металлов из руд при высоких температурах при участии восстановителей. В переводе с греческого «пирос» означает «огненный». Используют в качестве восстановителей кокс, диоксид углерода, водород. Применяют активные металлы для получения менее активных.

Пирометаллургия подразделяется на

  • карботермия,
  • водородотермия,
  • металлотермию.

Карботермия: перевод сульфида металла путем обжига в оксид и дальнейшим восстановлением углем до чистого состояния.

2ZnS + 3O2 = 2ZnO + 2 SO2

ZnO + C = CO + Zn

Руды, состоящие из оксидов и сульфидов железа, подвергают карботермии. Проводят восстановление коксом или диоксидом углерода (угарным газом). Получают сплавы железа — чугун и сталь. Первый содержит больше углерода, а также оксидов серы, фосфора и кремния. Углерод снижает твердость и другие характерные для металлов качества.

Химические реакции, лежащие в основе выплавки чугуна:

  1. C + O2 = CO2↑,
  2. CO2 + C ↔ 2CO↑,
  3. 3Fe2O3 + CO = 2Fe3O4+ CO2↑,
  4. Fe3O4 + CO = 3FeO + CO2↑,
  5. FeO + CO = Fe + CO2↑.

Сталь выплавляют в специальных печах — электрических, конвертерных, мартеновских (Рис. 3). При продувании обогащенного кислородом воздуха выгорает избыточный углерод, его содержание уменьшается до 2% и ниже. Этот способ является более экономически применим, т.к. при помощи него получают сталь и чугун, которые широко используются в современной промышленности.

Рис. 3. Пирометаллургия

Восстановлением углем можно получить железо, медь, цинк, кадмий, германий, олово, свинец и другие металлы. В качестве сырья используют медную (Cu2O), оловянную (SnO2), марганцевую (MnO2) руды.

Схема получение железа и хрома(Cr2Fe)O4 + 4C(кокс) = Fe + 2Cr + 4CO↑
Реакция, лежащая в основе выплавки медиCu2O + C (кокс) = 2Cu + CO↑
Схема производство оловаSnO2 + 2C (кокс) = Sn + 2CO↑
Процесс выплавки марганцаMnO2 + C(кокс) = Mn + CO2↑
Схема получения свинца2PbO + C → Pb + CO↑

Металлы можно извлечь из сульфидных руд. Сначала проводят обжиг, затем — восстановление полученного оксида углем. Схемы обжига цинковой обманки и получение цинка:

  1. 2ZnS +3O2 = 2ZnO + 2SO2↑;
  2. ZnO + C = Zn + CO↑.

Карбонаты тоже прокаливают с углем для получения оксидов и последующего восстановления углем. Схемы обжига сидерита и восстановления оксида железа:

  1. FeCO3 = FeO + CO2↑;
  2. FeO + C = Fe + CO↑.

Водородотермия — производство металлов восстановлением водородом

Достоинством этого металлургического метода является получение очень чистых металлов. Восстановление меди из оксида CuO — пример восстановительных свойств водорода из школьного курса неорганической химии. Схема протекания реакции (Рис 4):

Рис. 4. Восстановление меди водородом

Водородом восстанавливают из оксидов тугоплавкие металлы молибден и вольфрам.

Металлотермия

Проводят восстановление одного металла другим, более химически активным. Этот способ применяют для получения металлов из оксидов и галогенидов.

В зависимости от природы металла-восстановителя различают алюминотермию, или алюмотермию, — восстановление алюминием и магнийтермию — восстановление магнием.

Схема получение марганца3MnO2 + 4Al = 3Mn + 2Al2O3
Процесс выплавки хромаCr2O3 + 2Al → 2Cr + Al2O3
Схема получение кальция4CaO+ 2Al= 2Ca+ (CaAl2)O4

Силикотермия — восстановление металлов кремнием. Процесс протекает согласно схеме: 2MgO + Si → 2Mg + SiO2.

Металлы

К металлам относится большая часть элементов периодической системы – 82 химических элементов. Какими свойствами они обладают, и чем отличаются от неметаллов?

Получение металлов в химии

Металлами называют группу элементов, в виде простых веществ, которые обладают металлическими свойствами (пластичность, ковкость, блеск, электронная проводимость и т. д.)

Основное отличие элементов-металлов – они обладают только восстановительными свойствами, а в реакциях могут только окисляться. В соединениях они могут иметь только положительные степени окисления как в элементарных положительно заряженных ионах, так и в сложных ионах, где они образуют положительные центры.

Рис. 1. Список металлов.

Как правило, на внешнем уровне элементов металлов находится небольшое число электронов (1-3), значения электроотрицательности невысокие.

К металлам относятся все s-элементы (кроме водорода и гелия), d- и f-элементы, а также p-элементы под чертой бор-астат. Для типичных металлов характерен большой размер атомов, что способствует легкости отдачи валентных электронов.

Образующиеся положительные ионы устойчивы, так как имеют завершенную внешнюю электронную оболочку.

Все металлы, кроме ртути, при нормальных условиях в виде простых веществ находятся в твердом агрегатном состоянии и образуют металлическую кристаллическую решетку.

Рис. 2. Металлы в таблице Д.И. Менделеева.

В следующей таблицы представлены группы основных металлов:

Группа металловМеталл
Щелочныелитий, натрий, калий и т.д.
Щелочноземельныекальций, стронций, барий и т.д.
Переходныеуран, титан, железо, платина и т.д.
постпереходныеалюминий, свинец, олово и т.д.
Тугоплавкиемолибден, вольфрам
Цветныемедь, титан, магний и т.д.
Благородныезолото, серебро и т.д.

Металлы пластичны и ковки, особенно если на внешнем электронном уровне атомов по одному электрону: слои атомов перемещаются относительно друг друга без разрушения кристаллической решетки (щелочные металлы, медь, серебро, золото). В атомах непластичных хрупких металлов хрома и марганца – большое число валентных электронов.

Плотность, твердость, температура плавления металлов изменяются в широком диапазоне и зависят от атомной массы, строения атома и геометрии кристаллической решетки. Самый легкий металл – литий (плотность 0,53 г/см3), самый тяжелый – осмий (плотность 22,5 г/см3). Металлы с плотностью больше 5 г/см3 относят к тяжелым, меньше 5 г/см3 – к легким металлам.

Самая низкая температура плавления у ртути (-39 градусов по Цельсию), самый тугоплавкий металл – вольфрам (температура плавления 3410 градусов по Цельсию.) Энергия атомизации вольфрама составляет 836 кДж/моль, а температура кипения его 5930 градусов.

Металлы вступают в реакцию как с простыми, так и со сложными веществами. Как типичные восстановители металлы реагируют почти со всеми неметаллами-окислителями (кислород, сера, азот и т. д.):

Также металлы реагируют с такими сложными веществами, как оксиды и гидроксиды, разбавленные растворы кислот, с растворенными в воде щелочами.

В пределах одного и того же периода металлические свойства ослабевают, а неметаллические усиливаются; в пределах одной и той же группы (в главной подгруппе) металлические свойства усиливаются, а неметаллические ослабевают

Рис. 3. Металлы главных подгрупп.

Самый распространенный на земле элемент-металл – алюминий. За ним следуют железо, кальций, натрий.

Некоторые металлы встречаются в природе в самородном состоянии (золото, ртуть, платина), но в основном они находятся в природе в виде оксидов и солей.

Получение металлов происходит с помощью металлургии (получение из руд), пирометаллургии (получение с помощью реакции восстановления при высокой температуре), гидрометаллургии (извлечение из руд в виде растворимых соединений), электрометаллургии (получение металлов электролизом расплавов и растворов их соединений).

Металлы – вещества, которые обладают высокой электро- и теплопроводностью, ковкостью, пластичностью и металлическим блеском. В данной статье по химии 9 класса рассматриваются их физические и химические свойства, формулы класса металлов, а также способы получения.

Средняя оценка: 4. Всего получено оценок: 442.

Источник: https://obrazovaka.ru/himiya/metally-formula-9-klass.html

Гидрометаллургический способ

Гидрометаллургия — способ получения благородных, цветных, редких металлов. Например, оксид меди сначала переводят в сульфат с помощью серной кислоты. Медь вытесняют из раствора железом. Протекает следующая реакция замещения: CuSO4 + Fe = Cu + FeSO4. Либо медь извлекают из раствора электролизом. Пропускают электрический ток, ионы Cu2+ осаждаются на катоде.

Преимущество гидрометаллургического способа — возможность получать металлы из бедных руд. Еще один плюс метода — снижение газообразных выбросов в атмосферу. Большое количество вредных газов и сажи поступает в воздух при обжиге руды и пирометаллургии.

Гидрометаллургия

Гидрометаллургия — это восстановление металлов из их солей в растворе.

Процесс проходит в два этапа: 1) природное соединение растворяют в подходящем реагенте для получения раствора соли этого металла; 2) из полученного раствора данный металл вытесняют более активным или восстанавливают электролизом. Например, чтобы получить медь из руды, содержащей оксид меди СuО, ее обрабатывают разбавленной серной кислотой:

СuО + Н2SО4 = СuSO4 + Н2

Затем медь либо извлекают из раствора соли электролизом, либо вытесняют из сульфата железом:

СuSO4. + Fе = Сu + FеSO4

Таким образом, получают серебро, цинк, молибден, золото, уран.

Концентрация и очистка раствора

После выщелачивания щелок от выщелачивания обычно должен подвергаться концентрации ионов металлов, которые должны быть извлечены. Кроме того, иногда требуется удаление нежелательных ионов металлов.[1]

  • Осадки это селективное удаление соединения целевого металла или удаление основной примеси путем осаждения одного из его соединений. Медь осаждается в виде сульфида для очистки продуктов выщелачивания никеля.
  • Цементация представляет собой превращение иона металла в металл за счет окислительно-восстановительная реакция. Типичное применение включает добавление металлолома к раствору ионов меди. Железо растворяется и осаждается металлическая медь.
  • Экстракция растворителем
  • Ионный обмен
  • Редукция газа. Обработка раствора никеля и аммиака водородом дает металлический никель в виде порошка.
  • Электровиннинг особенно избирательно, если дорого электролиз процесс, применяемый для выделения драгоценных металлов. Золото можно гальванизировать из его растворов.

Экстракция растворителем

в экстракция растворителем представляет собой смесь экстрагент в разбавитель используется для извлечения металла из одной фазы в другую. При экстракции растворителем эту смесь часто называют «органической», потому что основным компонентом (разбавителем) является какой-то тип масла.

PLS (насыщенный выщелачивающий раствор) смешивают до эмульгирования с удаленным органическим веществом и дают ему разделиться.[нужна цитата

] Металл будет заменен PLS на органический, который они модифицировали.[
требуется разъяснение
] Результирующие потоки будут загруженными органическими и рафинат. При электролитическом выделении загруженные органические вещества затем смешивают до эмульгирования с обедненным электролитом и дают ему разделиться. Металл будет заменен органикой на электролит. Получающиеся потоки будут представлять собой очищенный от органики и богатый электролит. Органический поток рециркулирует через процесс экстракции растворителем в то время как водные потоки проходят цикл выщелачивания и электрохимического извлечения[
требуется разъяснение
] процессы соответственно.[
нужна цитата
]

Ионный обмен

Хелатирование агенты, натуральные цеолит, активированный уголь, смолы и жидкие органические вещества, пропитанные хелатирующими агентами, используются для обмена катионы или же анионы с раствором.[нужна цитата

] Селективность и извлечение зависят от используемых реагентов и присутствующих загрязнителей.

Рекомендации

  1. ^ аб
    Брент Хиски «Металлургия, обзор» в Энциклопедии химической технологии Кирк-Отмера, 2000, Wiley-VCH, Weinheim. Дои:10.1002 / 0471238961.1921182208091911.a01
  2. Ф. Хабаши «Последние тенденции в добывающей металлургии» Горный и металлургический журнал, Раздел B: Металлургия, 2009 г., Том 45, стр. 1-13. Дои:10.2298 / JMMB0901001H
  3. Гм, Намил (июль 2022 г.). Гидрометаллургический процесс извлечения редкоземельных элементов из отходов: основное применение кислотного выщелачивания с разработанной схемой
    . ИНТЕК. С. 41–60. ISBN 978-953-51-3402-2 .
  4. Хабаши, Фатхи (2005). «Краткая история гидрометаллургии». Гидрометаллургия
    .
    79
    (1–2): 15–22. Дои:10.1016 / j.hydromet.2004.01.008.
  5. Таскер, Питер А .; Тонг, Кристин С.; Вестра, Арьян Н. (2007). «Совместное извлечение катионов и анионов при извлечении цветных металлов». Обзоры координационной химии
    .
    251
    (13–14): 1868–1877. Дои:10.1016 / j.ccr.2007.03.014.
  6. Greenwood, N. N .; И Эрншоу, А. (1997). Химия элементов (2-е изд.), Оксфорд: Баттерворт-Хайнеманн. ISBN 0-7506-3365-4.
Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: emp-tg@cp9.ru