Ледебурит структурная составляющая железоуглеродистых сплавов


Заэвтектический чугун

Диаграмма состояния Fe — С. Вторичные превращения в высокоуглеродистых.  

В заэвтектических чугунах происходят превращения, рассмотренные выше, так как первичный цементит не имеет превращений.  

Эвтектические колонии белого зазвтек. тического чугуна. X 100.  

В заэвтектических чугунах пластины первичного цементита играют роль подкладки, на которой начинается эвтектическая кристаллизация.  

При затвердевании заэвтектических чугунов эвтектическому превращению предшествует выделение первичного цементита.  

Кривая охлаждения заэвтектического чугуна, со-держашего 5 % С ( Ks), показана на фиг.  

Превращения в заэвтектическом чугуне, содержащем более 4 3 % С, начинаются при температурах линии ликвидус с выделения кристаллов цементита. Концентрация углерода в жидкости снижается с понижением температуры по линии CD. Затвердевает сплав с образованием ледебурита. Заэвтекти-ческие чугуны не имеют свободных выделений углерода в виде графита, так как весь углерод связан в перлите и цементите, и отличаются высокой твердостью.  

Для проверки этого предположения заэвтектический чугун, содержащий 3 7 % С, 2 5 % S, 0 003 % 5ИСХ, выплавляли в магнезитовом тигле в индукционной печи МВП-ЗМ; после перегрева до 1500 С его модифицировали металлическим церием при 1460 С. Охлажденный до 1180 С расплав выливали в воду. Микроанализ дробинок 0 4 — 6 мм выявил шаровидные включения избыточного графита, окруженные тонким ледебуритом, в который превращалась при закалке жидкая фаза.  

Образование первичного графита в заэвтектическом чугуне или графита во время эвтектического превращения, а также образование графита за счет распада первичного или эвтектического цементита называется первой стадией графитизации.  

Линия эвтектических составов СС разграничивает области доэвтектических и заэвтектических чугунов.  

Аналогичные превращения аустенита эвтектики происходят в заэвтектических чугунах; структура таких чугунов ниже 723е С состоит из первичного цементита и ледебурита.  

Аналогичные превращения аустенита эвтектики происходят в заэвтектических чугунах; структура таких чугунов ниже 723 С состоит из первичного цементита и ледебурита.  

В зоне VII диаграммы ( рис. 7) структура заэвтектических чугунов состоит из ледебурита и первичного цементита. При температуре, соответствующей линии PSK, аустенит распадается, образуя перлит. Как указывалось выше, под влиянием некоторых факторов ( малая скорость затвердевания, содержание дополнительных компонентов, главным образом кремния) вместо цементита может образовываться графит. Чугуны без графита ( с ледебуритом) называются белыми, с ледебуритом и графитом — половинчатыми и без ледебурита ( с графитом) — серыми.  

В зоне VII диаграммы ( см. рис. 6 6) структура заэвтектических чугунов состоит из ледебурита и первичного цементита. При температуре, соответствующей линии PSK, аустенит распадается, образуя перлит. Как указывалось выше, под влиянием некоторых факторов ( малая скорость затвердевания, содержание дополнительных компонентов, главным образом кремния) вместо цементита может образовываться графит. Чугуны без графита ( с ледебуритом) называются белыми, с ледебуритом и графитом — половинчатыми и без ледебурита ( с графитом) — серыми.  

Обратная ликвация кремния в сером чугуне с 4 0 % С и 1 95 % Si. Травление пикратом натрия, Х50.  

Чтение диаграммы железо-углерод

Состав сплава с данным исходным содержанием углерода при заданной температуре мы можем увидеть, двигаясь по вертикальной линии, соответствующей содержанию углерода в сплаве.

Рассмотрим, например, область AEC. С ней соседствуют области аустенита AESG и жидкой фазы. Сплавы в ней состоят из жидкой фазы и образующегося твердого аустенита. Как определить концентрацию углерода в разных фазах для данного сплава? Рассмотрим для примера сплав с исходной концентрацией углерода 2,5% при температуре 1250°С.

Проведем из этой точки графика «2,5% C – 1250°С» горизонтальную прямую. Пересечение этой прямой с линией AE, граничащей с областью аустенита, покажет концентрацию углерода в аустените при данной температуре (~1.5%).

Пересечение этой же горизонтальной прямой с линией AС, граничащей с областью жидкой фазы, покажет концентрацию углерода в жидкой фазе при данной температуре (~3.5%).

Именно таким образом мы можем определить концентрацию углерода в фазах любого сплава при заданной температуре:

  • в жидкой фазе и аустените в области AEC;
  • в жидкой фазе в области CDF (концентрация углерода в цементите, конечно, постоянна – 6,67%);
  • в аустените в области SEFK;
  • в феррите в области QPKL;
  • в феррите и аустените в области GPS.

Как видим, при концентрации углерода выше 2,14% насыщение охлаждаемого расплава углеродом всегда стремится к 4,3% (по линиям AC и DC) по мере приближения к температуре 1147°С (уровень ECF). Далее происходит превращение жидкости в ледебурит (эвтектику). Естественно, с этим же средним содержанием углерода.

По мере приближения к температуре 727°С (уровень PSK) концентрация углерода в аустените («свободном» и/или входящем в состав ледебурита) стремится к 0,8% (по линиям GS и ES). Далее происходит превращение аустенита в перлит (эвтектоид). Перлит, конечно, имеет среднее содержанием углерода 0,8%.

Структура и свойства

Цементит
Основная фаза, инициирующая зарождение ледебурита — цементит. На пластинке цементита, зародившейся в эвтектической жидкости, разрастается плоский дендрит аустенита. Далее идет сравнительно быстрый парный рост взаимно проросших кристаллов обеих фаз. Каждая из фаз в пределах одной колонии ледебурита непрерывна, то есть относится к одному кристаллу.

В зависимости от температуры, фазовый состав ледебурита может быть разным. Так в температурном интервале от 1147 °C до 727 °C ледебурит состоит из аустенита и цементита, а при температурах ниже 727 °C — из феррита и цементита.

Ледебурит обладает высокими твёрдостью и хрупкостью.

Структура мартенсита

Компоненты, фазы, линии и точки диаграммы fe-fe3c

Основным отличием, которое приводит к изменению физических и механических характеристик стали является изменение внутренней структуры. Её называют мартенситная структура. В этом случае кристаллическая решётка претерпевает следующие изменения. Под воздействием внешних факторов происходит изменение направления движения атомов по сравнению с их стандартным, упорядоченным движением в рамках установленной решётки. Увеличиваются межатомные расстояния, что приводит к возникновению деформации, примерно на 10% относительно нормальных размеров. Величина изменений не приводит к переходу через энергетический барьер межатомных связей. Такой кристаллический эффект приводит к образованию специфической формы взаимных связей. Она носит так называемый игольчатый характер.

Изменения структуры стали происходит в процессе нагрева. Повышение температуры вызывает диффузионное перераспределение атомов углерода в рамках кристаллической решётки. Этот процесс вызывает образование нескольких фаз металла.

  1. При повышении содержания углерода до 6,7% возникает материал называемый цементит. Он имеет решётку в форме ромба.
  2. При низком содержании углерода (не более 0,02%) формируется феррит. Его решётка приобретает объёмно-центрированную форму.
  3. Аустенит. Структура железоуглеродистых сплавов, представляющих смесь углерода в количестве около 2% различных легирующих добавок. Кристаллическая решётка этого материала имеет форму куба со строго центрированными гранями. Отличительной особенностью аустенита является его высокая плотность по сравнению с другими структурами стали. Он образуется при температуре нагрева от 910 до 1401 °С и сохраняет свою устойчивость до температуры 723 °С. При дальнейшем охлаждении превращается в другие более устойчивые структуры. При добавлении никеля, марганца или хрома аустенит сохраняет свою структуру вплоть до комнатной температуры. К сталям, имеющим аустенитную структуру, относятся почти все хромоникелевые стали.
  4. Перлит является механической смесью цементита и феррита. В этой смеси присутствие углерода составляет 0,8%. Он образуется из аустенита в процессе охлаждения. Он является эвтектоидом и может обладать пластичной или зернистой структурой. От этого состояния зависят его физические и особенно механические свойства.
  5. При повышении содержания углерода до 4,3% из смеси аустенита и цементита образуется материал, называемый ледебурит. Его формирование происходит при температуре расплава в 1147 °С.
  6. Мартенсит – это перенасыщенный раствор железа и углерода. Его обычно получают при закалке аустенита. В результате температурного воздействия мартенситный материал приобретает из кубической тетрагональную решётку, которая придаёт ему твердость до 1000 HV.

В результате обработки полученная мартенситная сталь приобретает игольчатую структуру, которая формирует более высокие прочностные характеристики, становится устойчивее к воздействию коррозии

Отрывок, характеризующий Ледебурит

Исчезнувшая во время разговора глупая улыбка опять явилась на лице военного министра. – До свидания, очень благодарю вас. Государь император, вероятно, пожелает вас видеть, – повторил он и наклонил голову. Когда князь Андрей вышел из дворца, он почувствовал, что весь интерес и счастие, доставленные ему победой, оставлены им теперь и переданы в равнодушные руки военного министра и учтивого адъютанта. Весь склад мыслей его мгновенно изменился: сражение представилось ему давнишним, далеким воспоминанием. Князь Андрей остановился в Брюнне у своего знакомого, русского дипломата .Билибина. – А, милый князь, нет приятнее гостя, – сказал Билибин, выходя навстречу князю Андрею. – Франц, в мою спальню вещи князя! – обратился он к слуге, провожавшему Болконского. – Что, вестником победы? Прекрасно. А я сижу больной, как видите. Князь Андрей, умывшись и одевшись, вышел в роскошный кабинет дипломата и сел за приготовленный обед. Билибин покойно уселся у камина. Князь Андрей не только после своего путешествия, но и после всего похода, во время которого он был лишен всех удобств чистоты и изящества жизни, испытывал приятное чувство отдыха среди тех роскошных условий жизни, к которым он привык с детства. Кроме того ему было приятно после австрийского приема поговорить хоть не по русски (они говорили по французски), но с русским человеком, который, он предполагал, разделял общее русское отвращение (теперь особенно живо испытываемое) к австрийцам. Билибин был человек лет тридцати пяти, холостой, одного общества с князем Андреем. Они были знакомы еще в Петербурге, но еще ближе познакомились в последний приезд князя Андрея в Вену вместе с Кутузовым. Как князь Андрей был молодой человек, обещающий пойти далеко на военном поприще, так, и еще более, обещал Билибин на дипломатическом. Он был еще молодой человек, но уже немолодой дипломат, так как он начал служить с шестнадцати лет, был в Париже, в Копенгагене и теперь в Вене занимал довольно значительное место. И канцлер и наш посланник в Вене знали его и дорожили им. Он был не из того большого количества дипломатов, которые обязаны иметь только отрицательные достоинства, не делать известных вещей и говорить по французски для того, чтобы быть очень хорошими дипломатами; он был один из тех дипломатов, которые любят и умеют работать, и, несмотря на свою лень, он иногда проводил ночи за письменным столом. Он работал одинаково хорошо, в чем бы ни состояла сущность работы. Его интересовал не вопрос «зачем?», а вопрос «как?». В чем состояло дипломатическое дело, ему было всё равно; но составить искусно, метко и изящно циркуляр, меморандум или донесение – в этом он находил большое удовольствие. Заслуги Билибина ценились, кроме письменных работ, еще и по его искусству обращаться и говорить в высших сферах. Билибин любил разговор так же, как он любил работу, только тогда, когда разговор мог быть изящно остроумен. В обществе он постоянно выжидал случая сказать что нибудь замечательное и вступал в разговор не иначе, как при этих условиях. Разговор Билибина постоянно пересыпался оригинально остроумными, законченными фразами, имеющими общий интерес. Эти фразы изготовлялись во внутренней лаборатории Билибина, как будто нарочно, портативного свойства, для того, чтобы ничтожные светские люди удобно могли запоминать их и переносить из гостиных в гостиные. И действительно, les mots de Bilibine se colportaient dans les salons de Vienne, [Отзывы Билибина расходились по венским гостиным] и часто имели влияние на так называемые важные дела. Худое, истощенное, желтоватое лицо его было всё покрыто крупными морщинами, которые всегда казались так чистоплотно и старательно промыты, как кончики пальцев после бани. Движения этих морщин составляли главную игру его физиономии. То у него морщился лоб широкими складками, брови поднимались кверху, то брови спускались книзу, и у щек образовывались крупные морщины. Глубоко поставленные, небольшие глаза всегда смотрели прямо и весело. – Ну, теперь расскажите нам ваши подвиги, – сказал он. Болконский самым скромным образом, ни разу не упоминая о себе, рассказал дело и прием военного министра. – Ils m’ont recu avec ma nouvelle, comme un chien dans un jeu de quilles, [Они приняли меня с этою вестью, как принимают собаку, когда она мешает игре в кегли,] – заключил он.

Структура и свойства

Сварка аустенитных сталей

Основная фаза, инициирующая зарождение ледебурита — цементит. На пластинке цементита, зародившейся в эвтектической жидкости, разрастается плоский дендрит аустенита. Далее идет сравнительно быстрый парный рост взаимно проросших кристаллов обеих фаз. Каждая из фаз в пределах одной колонии ледебурита непрерывна, то есть относится к одному кристаллу.

В зависимости от температуры, фазовый состав ледебурита может быть разным. Так в температурном интервале от 1147 °C до 727 °C ледебурит состоит из аустенита и цементита, а при температурах ниже 727 °C — из феррита и цементита.

Ледебурит обладает высокими твёрдостью и хрупкостью.

Степень — эвтектичность — чугун

Степень эвтектичности чугуна определяется долей эвтектики в его структуре. В случае чистых железоуглеродистых сплавов она вычисляется по правилу рычага на коноде ЕС ( или Е С) эвтектического превращения ( фиг.  

Степень эвтектичности чугуна определяется долей эвтектики в его структуре.  

Структурная диаграмма Н. Г. Гиршо.  

Прямые линии Са на диаграмме показывают степень эвтектичности чугуна с учетом углеродного эквивалента. Если эта величина равна 4 25, то чугун эвтектический; если она меньше 4 25, то чугун доэвтектпческий.  

На диаграммах отражено влияние кремния на степень эвтектичности чугуна: по мере увеличения его содержания снижается ликвидус ТБ и сужается двухфазная область Ж — — А.  

Структурная диаграмма Гиршовича-Иоффе ( немодифицированный чугун. Структура металлической основы. Я — перлит. Ц — цементит. Ф — нормальный феррит. Ф — анормальный феррит. Структура графита. / и / / — пластинчатый неориентированный и междендритный. / / / — точечный.  

Выше также было показано, что содержание и структура графитной фазы в чугуне связаны со степенью эвтектичности чугуна, что подтверждается анализом диаграмм Гиршовича — Иоффе. Поэтому в основу конодной диаграммы было также положено семейство линий — изоэвтектик, представляющих собой геометрическое место фигуративных точек чугуна с одинаковой степенью эвтектичности и делящих коноды на пропорциональные отрезки.  

В диаграмме Колло и номограмме Кола отражена зависимость предела прочности при растяжении, твердости и модуля упругости от степени эвтектичности чугуна.  

Содержание газов в чугуне в зависимости от степени эвтектичности 5Э.  

Из общего количества газов в чугуне содержание водорода составляет 50 — 65 %, оно снижается с увеличением степени эвтектичности чугуна. Количество водорода, выделившегося при хранении, составляет около 80 % от общего его содержания.  

Сопоставление кинетических диаграмм кристаллизации хромистых чугунов близ эвтектического состава ( рис. 64) показывает, что увеличение содержания хрома не оказывает заметного влияния яа относительное положение линии появления аустенита БЗ, следовательно, хром незначительно влияет на степень эвтектичности чугуна. Температурный интервал выделения графита уменьшается и при концентрациях 1 92 % Сг — графит из расплава не выделяется. Сдвиг линии ОФ вправо свидетельствует о том, что с ростом содержания хрома выделение графита затрудняется. Уместно сопоставить с этим влияние марганца ( см. рис. 58), увеличение содержания которого в чугуне не приводит к расширению инкубационного периода появления графита в жидкости.  

При затвердевании доэвтектических чугунов вначале кристаллизуется избыточный аустенит. Как и в сером до-эвтектическом чугуне, он растет в виде трехмерных денд-ритов. Их количество, величина и разветвленность определяются степенью эвтектичности чугуна и условиями охлаждения. Затем происходит одновременная кристаллизация аустенита и цементита в ходе эвтектического распада жидкого раствора.  

Образование шаровидного графита в высококремнистых чугунах происходит лишь в условиях, обеспечивающих значительное переохлаждение расплава. В практике производства отливок большое значение имеет образование сильно разветвленного, в том числе междендритного графита при ускоренном затвердевании чугуна с повышенным содержанием кремния. В случае медленной кристаллизации чугуна, напротив, повышение содержания кремния приводит к образованию более грубого графита. Это является следствием повышения степени эвтектичности чугуна при добавке к нему кремния и обнаруживается прежде всего в малоуглеродистых чугунах.  

Влияние химических элементов на свойства железоуглеродистых сплавов

Железоуглеродистый сплав кроме железа и углерода (постоянных компонентов) содержит полезные, вредные и постоянные (технологические) примеси, которые оказывают различные влияния на свойства конструкционных материалов.

Углерод в железоуглеродистом сплаве может находиться в виде карбида железа Fe3C (цементита) либо в виде графита.

Углерод является основным сплавляемым компонентом, который специально вводят для увеличения прочности, твердости и улучшения технологических и эксплуатационных свойств конструкционных материалов. Влияние углерода на свойства конструкционных материалов зависит от состояния или взаимодействия его с железом, т. е. от образования той или иной структуры железоуглеродистого сплава.

Если при взаимодействии углерода с железом образуется цементит, то сплав будет иметь высокие твердость, хрупкость и практически не будет поддаваться обработке резанием.

Если углерод, взаимодействуя с железом, образует структуры механических смесей (перлита или феррита), то сплав будет иметь высокие механические и технологические свойства.

Кремний и марганец в железоуглеродистых сплавах являются полезными примесями. Кремний в сплав попадает частично из руды, а основная масса — в процессе плавки при раскислении сплава.

Раскисление — это процесс удаления вредных включений оксида железа (FeO) путем введения раскислителей (марганца, кремния и различных ферросплавов). Раскислители, соединяясь с оксидом железа, образуют шлаки, которые подлежат удалению. Незначительная часть раскислителей остается в железоуглеродистом сплаве. Как правило, раскислению подлежит большинство сталей и чугунов.

Кремний полностью растворяется в основной структуре сплава с образованием твердого раствора, повышает предел текучести, уменьшает хрупкость. Высокое содержание кремния (1 … 2 %) придает стали упругость. Кроме того, кремний способствует преобразованию углерода из структуры цементита в свободный углерод в виде графита, уменьшая при этом твердость и хрупкость сплавов. Марганец попадает в сплав при переработке марганцевых руд, а также в процессе раскисления.

Марганец образует с железом твердый раствор, а также способствует образованию химического соединения, поэтому он повышает твердость, износостойкость, прочность. Высокое содержание марганца способствует образованию цементита, что приводит к повышению твердости и хрупкости сплава. Кроме того, марганец нейтрализует вредное влияние серы.

Сера и фосфор в железоуглеродистых сплавах являются вредными примесями.

Фосфор попадает в сплав из руды. Исходный чугун, как правило, имеет высокую массовую долю фосфора. Фосфор ограниченно растворяется в железе, а его избыточное содержание приводит к образованию фосфида железа — очень хрупкого соединения. Фосфор, растворяясь в железе, резко снижает его плотность и приводит к хрупкости в холодном состоянии. Это свойство называется хладноломкостью сплавов. Фосфор также приводит к повышению твердости и уменьшению прочности. Марганец, взаимодействуя с фосфором в процессе раскисления, удаляет его с образованием шлаков.

В отдельных случаях фосфор может быть полезен, так как улучшает обрабатываемость резанием, жидкотекучесть, а при наличии незначительного количества меди повышает коррозионную стойкость.

Сера попадает в сплав из руд, а также из топлива в процессе его горения. Не растворяясь в железе, сера образует с ним легкоплавкую и очень хрупкую механическую смесь (эвтектику) и делает сплав хрупким в районе температур красного каления (это свойство получило название красноломкости), поэтому железоуглеродистые сплавы с высоким содержанием серы не подвергаются горячей обработке давлением.

При высоком содержании в сплаве углерода наличие серы повышает его твердость и хрупкость, ухудшает литейные свойства, снижает жидкотекучесть, увеличивает усадку металла при охлаждении отливок и склонность к образованию микротрещин. Вредное влияние серы нейтрализуется марганцем. При введении в сплав незначительной массовой доли марганца образуется соединение с серой — сульфид марганца (MnS) вместо легкоплавкого сульфида железа (FeS). Сульфид марганца частично удаляется вместе со шлаком.

В железоуглеродистых сплавах могут находиться с очень низкой массовой долей различные газы: азот, водород и кислород. Эти химические элементы являются скрытыми примесями. Из-за сложности их химического анализа массовую долю этих элементов не определяют и в технических условиях не нормируют.

Кроме того, в незначительных количествах встречаются различные металлы (олово, цинк, сурьма, свинец, никель, медь, хром и др.) — случайные примеси. Эти группы металлов попадают как из руд, так и из перерабатываемого при металлургическом процессе стального лома.

Все перечисленные случайные примеси являются неизбежным следствием технологического процесса, т. е. специально не добавляются. В связи с этим получаемые стали с незначительной массовой долей никеля, меди, хрома и других металлов не рассматривают как легированные стали.

Кроме естественных, постоянных, скрытых и случайных химических элементов в железоуглеродистый сплав (особенно в сталь) вводят специальные химические элементы с целью изменения микроструктуры сплава, физико-химических и других свойств.

Специально вводимые в железоуглеродистый сплав химические элементы называют легирующими элементами, а сплавы, полученные на их основе, — легированными сплавами (сталями и чугунами).

В качестве легирующих элементов вводят алюминий, ванадий, вольфрам, молибден, медь, кобальт, кремний, никель, тантал, титан, хром и др.

Государственные стандарты строго регламентируют массовую долю полезных и вредных примесей в железоуглеродистых сплавах.

В сталях, как правило, содержание этих элементов, %, ограничивается следующими верхними пределами:

Марганец ………………………………………………………………………………… 0,8

Кремний ………………………………………………………………………………….. 0,5

Фосфор …………………………………………………………………………………… 0,05

Сера ………………………………………………………………………………………… 0,05

В чугунах по государственным стандартам допускается более высокая массовая доля, %, полезных и вредных примесей (в зависимости от групп и марок):

Марганец ……………………………………………………………………… 0,3 … 1,5

Кремний ………………………………………………………………………… 0,3 … 5,0

Фосфор …………………………………………………………………………. 0,20… 0,65

Сера ………………………………………………………………………………. 0,08 … 0,12

Присутствие в железоуглеродистых сплавах

Чугуны

Ледебуритная смесь возникает, для чистых железоуглеродистых сплавов в интервале концентраций углерода от 2 ,14% до 6,67 %, что соответствует чугунам. Механизм образования ледебурита в доэвтектических (левее точки эвтектики, соответствующей 4,3 углерода, на диаграмме железо-углерод), эвтектических и заэвтектических (правее точки эвтэктики) чугунах различается.

в доэвтектических чугунах

При охлаждении жидкой фазы состава доэвтектического чугуна первым начинает кристаллизоваться аустенит, вследствие чего состав жидкой фазы начинает смещаться в сторону увеличения концентрации углерода (ввиду меньшей растворимости углерода в аустените). По достижении точки эвтектики (4,3 % углерода, 1147 °C) начинается кристаллизация эвтектики — ледебурита. В процессе дальнейшего охлаждения чугуна в интервале температур от 1147 °C до 727 °C аустенит обедняется углеродом и выделяется вторичный цементит. Вторичный цементит, выделяющийся по границам зерен аустенита, сливается с цементитом ледебурита, поэтому практически не виден под микроскопом. При небольшом переохлаждении ниже 727 °C аустенит по эвтектоидной реакции превращается в перлит (разделяется на феррит и цементит). Таким образом, в доэвтектических белых чугунах, при комнатной температуре, ледебурит, как структурная составляющая, присутствует наряду с перлитом и вторичным цементитом.

в эвтектическом чугуне

При охлаждении жидкой фазы состава точки эвтектики до температуры 1147 °C начинается одновременная кристаллизация смеси аустенита и цементита — ледебурита. В дальнейшем аустенит распадается на феррито-цементитную смесь (перлит).

в заэвтектических чугунах

В заэвтектических белых чугунах из жидкости кристаллизуется первичный цементит в виде плоских игл, затем образуется ледебурит. При комнатной температуре эаэвтектический белый чугун содержит две структурные составляющие: первичный цементит и ледебурит.

Ледебурит может образовываться в сталях если в них, во-первых, содержание углерода достаточно велико (свыше 0,7 % (~1,3 %—1,5 %), что соответствует инструментальным сталям), и, во-вторых, при высоком содержании карбидообразующих легирующих элементов (Cr, W, Ti, Mo и др.). Введение этих легирующих элементов, в больших количествах, уменьшает растворимость углерода в аустените и перлите, что, в определённых случаях, и приводит к возможности выделения эвтектики при, сравнительно, малых содержаниях углерода. Такие стали (например, быстрорежущая) называют ледебуритными.

Некоторые элементы диаграммы железо-углерод

Выделим несколько границ на диаграмме железо-углерод:

  • линия ACD. Линия ликвидус
    . При охлаждении сплавов ниже нее начинается их кристаллизация;
  • линия AECF. Линия солидус
    . При охлаждении сплавов ниже нее весь сплав переходит в твердое состояние;
  • линия ECF. Иногда называется линией ледебуритного превращения. При охлаждении сплавов с содержанием углерода выше 2,14% ниже нее жидкая фаза превращается в ледебурит;
  • линия PSK. Линия перлитного превращения
    . При охлаждении сплавов ниже нее аустенит превращается в перлит.

Отметим несколько важных точек на диаграмме:

  • точка E. Точка максимального насыщения аустенита углеродом – 2,14%, при температуре 1147°С;
  • точка P. Точка максимального насыщения феррита углеродом – 0,025%, при температуре 727°С;
  • точка S. Точка «0,8% С-727°С» превращения аустенита с концентрацией углерода 0,8% в перлит (эвтектоид) той же средней концентрации;
  • точка C. Точка «2,14 % С-1147°С» превращения жидкости с концентрацией углерода 2,14% в ледебурит (эвтектику) той же средней концентрации.

Часто значения температур, при которых происходят структурные изменения конкретного сплава обозначают буквами A:

  • A1 – линия PSK;
  • A2 – линия MO – точка Кюри, в которой происходит изменение магнитных свойств сплавов;
  • A3 – температуры, соответствующие линии GS;
  • Acm – температуры, соответствующие линии SE.

Поскольку температуры фазовых переходов при нагреве и охлаждении слегка отличаются, то часто вводят дополнительные буквенные обозначения:

  • с – для температур фазовых переходов при нагреве;
  • r – при охлаждении,

например, Ac1 или Ar1.

Структура и свойства

Основная фаза, инициирующая зарождение ледебурита — цементит. На пластинке цементита, зародившейся в эвтектической жидкости, разрастается плоский дендрит аустенита. Далее идет сравнительно быстрый парный рост взаимно проросших кристаллов обеих фаз. Каждая из фаз в пределах одной колонии ледебурита непрерывна, то есть относится к одному кристаллу.

В зависимости от температуры, фазовый состав ледебурита может быть разным. Так в температурном интервале от 1147 °C до 727 °C ледебурит состоит из аустенита и цементита, а при температурах ниже 727 °C — из феррита и цементита.

Ледебурит обладает высокими твёрдостью и хрупкостью.

Фазовая диаграмма Железо — Углерод.

Химические свойства

Серый, относительно твёрдый, термически устойчивый. Не реагирует с водой, щелочами, гидратом аммиака.

разлагается при температуре выше 1650 °C:

Разлагается кислотами (конц.):

Реагирует с кислородом:

Температура плавления цементита

Согласно данным Гуляева А.П. температура плавления цементита — около 1600°.

По расчётным данным , виртуальная температура плавления цементита

оценивается равной 1200-1450°. Возможно, цементит испытывает инконгруэнтное разложение при температурах 1250-1300°.

Первичный цементит

Различают первичный, вторичный и третичный цементит. Первичный цементит

выделяется из жидкости. Первичный цементит выделяется только при закалке сплавов, содержащих до 5,5% (по массе) углерода . Форма первичного цементита: длинные крупные пластины.

Вторичный цементит

Вторичный цементит выделяется из аустенита — γ-твёрдого раствора. При охаждении выделение происходит по линии ES (диаграмма Fe-C). Форма вторичного цементита

: цементитная сетка, цементит по границам зёрен.

Третичный цементит

Третичный цементит выделяется из феррита. Форма третичного цементита

: пластинки и прожилки, а также выделения в виде иголок в ферритном зерне. При более быстром охлаждении часть углерода остаётся в твёрдом растворе; выделение третичного цементита подавляется.

Другие формы существования цементита

(по Хоу): цементит перлита, цементит ледебурита, цементит Стеда, зернистый цементит, специальные карбиды.

Автор обзора: Корниенко А.Э. (ИЦМ)

Лит.:

  1. Иванов В.Н. Словарь-справочник по литейному производству. – М.: Машиностроение, 1990. – 384 с.: ил. ISBN 5-217-00241-1
  2. Гуляев А.П. Металловедение. — М.: Металлургия, 1977. — УДК669.0(075.8)
  3. Диаграммы состояния двойных и многокомпонентных систем на основе железа: Справ. изд./ Банных О.А., Будберг П.Б., Алисова С.П. и др. М.: Металлургия, 1986. 440 с. УДК 669.15.017.12(083)
  4. Циммерман Р., Гюнтер К. Металлургия и материаловедение. Справ изд. Пер. с нем. М.: Металлургия, 1982. 480 с.
  5. H. K. D. H. Bhadeshia. The Structure of Cementite // Department of Materials Science and Metallurgy/ University of Cambridge , Last updated 19/6/2008 — Режим доступа: https://www.msm.cam.ac.uk/, свободный. — Загл. с экрана.

См. также Железоуглеродистые сплавы, Диаграмма состояния системы железо-цементит.

Доэвтектический чугун

Графитовые образования ( 10 — 100 А), возникающие над линией ликвидуса в доэвтектических чугунах, обладают развитой поверхностью, а свойства такой системы ( жидкость дисперсные образования) зависят от свойств и размеров входящих в нее поверхностей раздела. Пинакоиды графита являются устойчивыми образованиями. Выдержка при 1700 С не устраняет полностью микронеоднородность расплава. Таким образом, микрогетерогенность расплавов чугуна имеет наследственное происхождение, связанное с неполным растворением углерода в процессе плавки. На основании экспериментальных данных можно предположить, что дисперсные выделения графита начинаются выше температуры ликвидуса.  

Титан понижает температуру эвтектического превращения и способствует переохлаждению чугуна, при содержании до 0 5 % в доэвтектическом чугуне способствует графитизации и выделению графита в виде мелких пластин. Титан является хорошим раскислителем, способствует равномерному распределению в чугуне графита. Титан нейтрализует действие хрома в чугуне, являясь модификатором, вследствие чего отпадает необходимость в повышении содержания кремния. Титан способствует повышению механических свойств, особенно прочности высокоуглеродистых чугунов. При содержании 0 18 — 0 20 % титан с углеродом образуют карбиды и препятствуют графитизации. Титан используют как модификатор при производстве ковкого чугуна, но для отливок из высокопрочного чугуна Ti нежелательная примесь, так как препятствует образованию шаровидного графита.  

В зависимости от концентрации углерода в сплаве чугуны разделяются на доэвтектические, эвтектиче: кие и заэвтектические: доэвтектические чугуны содержат 2 14 — 4 3 % С и имеют структуру перлит — Ь цементит; эвтектические чугуны содержат 4 3 % С и состоят из ледебурита; заэвтектический чугун содержит более 4 3 % С, имеет структуру ледебурит цементит.  

Рассмотрим в соответствии с диаграммой состояния железо — углерод фазовые превращения, происходящие при охлаждении из жидкого состояния в доэвтектическом чугуне, содержащем 3 % С.  

Такой же распавшийся аустенит наблюдается также и на избыточных ( темных) участках, содержащихся в большем или меньшем количестве в доэвтектических чугунах ( фиг.  

Жидкотекучесть чугуна характеризует заполнение литейной формы и зависит главным образом от химического состава и температуры заливки С, Si, Р и Си повышают жидкотекучесть доэвтектического чугуна, a S и Сг понижают ее; влияние Мп и Ni на жидкотекучесть незначительно.  

Точка С ( 4 3 % углерода) представляет собой эвтектическую точку и разделяет сплавы, содержащие от 2 до 6 67 % углерода ( чугуны), на две группы: сплавы, содержащие менее 4 3 % С, — доэвтектические чугуны, а сплавы, содержащие более 4 3 % С, — заэвтектические чугуны. Следует подчеркнуть, что в машиностроении практическое значение имеют доэвтектические и эвтектические чугуны, а заэвтектические чугуны не применяются.  

Влияние углерода на твердость хромистых чугунов при содержании кремния, %.  

Эвтектический состав чугунов с 30 — 35 % Сг приходится на — 2 5 % С. Доэвтектический чугун имеет структуру твердого раствора хромистого феррита и эвтектических карбидов, количество которых зависит от содержания углерода.  

Твердая фаза в области, лежащей между линиями EGF и PSK с содержанием углерода более 2 14 %, соответствующая белым чугунам, имеет различный состав. Доэвтектические чугуны ( 2 14 — 4 3 % углерода) состоят из аустенита и ледебурита, эв тектические ( 4 3 %) из ледебурита и заэвтектические ( 4 3 — 6 67 %) из цементита и ледебурита. При этом, в отличие от сталей, температура плавления чугунов ( линия EGF) постоянна и не зависит от содержания в них углерода.  

Чугуны по структурным свойствам подразделяют на доэвтек-тические и заэвтектические относительно эвтектического состава 4 3 % С. Доэвтектические чугуны имеют перлитно-ледебуритную структуру, а заэвтектические — цементитно-ледебуритную.  

Во всех чугунах имеется аустенит. В доэвтектических чугунах имеется свободный аустенит ( см. сплав / — /, фиг.  

Наконец, в доэвтектических чугунах первичные выделения аустенита меняют свою концентрацию при охлаждении от точки 3 до точки 4 ( сплав / CJ от 2 до 0 8 % С, и в точке 4 происходит перлитное превращение. Структура такого доэвтектического чугуна состоит из перлита, ледебурита и вторичного цементита. Структура доэвтектического чугуна показана на фиг.  

Наконец, в доэвтектических чугунах первичные выделения аусте-нита меняют свою концентрацию при охлаждении от точки 3 до точки 4 ( сплав KJ) от 2 14 до 0 8 % С, и в точке 4 происходит перлитное превращение. Структура такого доэвтектического чугуна состоит из перлита, ледебурита и вторичного цементита.  

Фазы в системе “железо-углерод”

В системе железо – углерод существуют следующие фазы: жидкая фаза, феррит, аустенит, цементит, графит.

Жидкая фаза

Жидкая фаза. В жидком состоянии железо хорошо растворяет углерод в любых пропорциях с образованием однородной жидкой фазы.

Феррит

Феррит (Ф, α)- твердый раствор внедрения углерода в α-железе (от латинского слова ferrum – железо). Различают низкотемпературный феррит с предельной растворимостью углерода 0,02 % при температуре 727° С (точка P) и высокотемпературный δ-феррит (в интервале температур 1392…1539° С) с предельной растворимостью углерода 0,1 % при температуре 1499° С (точка J).

Свойства феррита близки к свойствам железа. Он мягок (твердость – 80 – 130 НВ, временное сопротивление – σв=300 МПа) и пластичен (относительное удлинение – δ=50 %), магнитен до 768° С.

Под микроскопом феррит выглядит как светлые полиэдрические зерна. В сталях может существовать в виде сетки (разной толщины, в зависимости от содержания углерода), зерен (малоуглеродистые стали), пластин или игл (видманштетт).

Аустенит в сталях

Аустенит (А, γ) – твердый раствор внедрения углерода в γ–железо (по имени английского ученого Р. Аустена). Углерод занимает место в центре гранецентрированной кубической ячейки. Предельная растворимость углерода в γ -железе 2,14 % при температуре 1147° С (точка Е). Аустенит имеет твердость 180 НВ, пластичен (относительное удлинение – δ=40…50 %), парамагнитен. При растворении в аустените других элементов могут изменяться свойства и температурные границы существования. Под микроскопом выглядит как светлые полиэдрические зерна с двойниками.

Цементит – формы существования

В железоуглеродистых сплавах присутствуют фазы: цементит первичный, цементит вторичный, цементит третичный. Химические и физические свойства этих фаз одинаковы. Влияние на механические свойства сплавов оказывает различие в размерах, количестве и расположении этих выделений. Цементит первичный выделяется из жидкой фазы в виде крупных пластинчатых кристаллов. Цементит вторичный выделяется из аустенита и располагается в виде сетки вокруг зерен аустенита (при охлаждении – вокруг зерен перлита). Цементит третичный выделяется из феррита и в виде мелких включений располагается у границ ферритных зерен.

Поскольку углерод в сплавах с железом встречается в виде цементита и графита, существуют две диаграммы состояния, описывающие условия равновесия фаз в системах железо – цементит и железо – графит. Первая диаграмма (Fе — Fе3С) называется цементитной (метастабильная), вторая (Fе – С) – графитной (стабильная). Оба варианта диаграммы приводятся вместе в одной системе координат: температура – содержание углерода. Диаграмма состояния системы железо – углерод построена по результатам многочисленных исследований, проведенных учеными ряда стран. Особое место среди них занимают работы Д.К. Чернова

Он открыл существование критических точек в стали, определил их зависимость от содержания углерода, заложил основы для построения диаграммы состояния железоуглеродистых сплавов в ее нижней, наиболее важной части

Буквенное обозначение узловых точек в диаграмме является общепринятым как в России, так и за рубежом.

Диаграмма состояния железо-углерод

Имеющиеся во всех областях диаграммы фазы видны на рисунке. Значение всех линий указано в таблице.

Ликвидус по всей диаграмме проходит по линиям АВ, ВС, СD; солидус – по линиям АН, НJ, JЕ, ЕСF. Сплавы железа с углеродом обычно делят на стали и чугуны. Условной границей для такого деления является 2,14 % С (точка E). Сплавы, содержащие углерода менее 2,14 %, относятся к сталям, более 2,14 % – к чугунам.

Температуры, при которых происходят фазовые и структурные превращения в сплавах системы железо – цементит, т.е. критические точки, имеют условные обозначения. Обозначаются буквой А. В зависимости от того, при нагреве или при охлаждении определяется критическая точка, к букве А добавляется индекс с (от слова chauffage – нагрев) при нагреве и индекс r (от слова refroidissement – охлаждение) при охлаждении с оставлением цифры, характеризующей данное превращение.

Таким образом, например, нагрев доэвтектоидной стали выше соответствующей точки на линии GS обозначается как нагрев выше точки АС3. При охлаждении же этой стали первое превращение должно быть обозначено как Аr3, второе (на линии РSК) – как Аr1.

Структура и свойства

Основная фаза, инициирующая зарождение ледебурита — цементит. На пластинке цементита, зародившейся в эвтектической жидкости, разрастается плоский дендрит аустенита. Далее идет сравнительно быстрый парный рост взаимно проросших кристаллов обеих фаз. Каждая из фаз в пределах одной колонии ледебурита непрерывна, то есть относится к одному кристаллу.

В зависимости от температуры, фазовый состав ледебурита может быть разным. Так в температурном интервале от 1147 °C до 727 °C ледебурит состоит из аустенита и цементита, а при температурах ниже 727 °C — из феррита и цементита.

Ледебурит обладает высокими твёрдостью и хрупкостью.

Структура и свойства

Основная фаза, инициирующая зарождение ледебурита — цементит. На пластинке цементита, зародившейся в эвтектической жидкости, разрастается плоский дендрит аустенита. Далее идет сравнительно быстрый парный рост взаимно проросших кристаллов обеих фаз. Каждая из фаз в пределах одной колонии ледебурита непрерывна, то есть относится к одному кристаллу.

В зависимости от температуры, фазовый состав ледебурита может быть разным. Так в температурном интервале от 1147 °C до 727 °C ледебурит состоит из аустенита и цементита, а при температурах ниже 727 °C — из феррита и цементита.

Ледебурит обладает высокими твёрдостью и хрупкостью.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]