Особенности и сферы применения алюминиевых сплавов


29.06.2020 Автор: VT-METALL

Вопросы, рассмотренные в материале:

  • Краткую характеристику алюминия и его сплавов
  • Классификацию алюминиевых сплавов
  • О маркировке алюминиевых сплавов
  • 4 способа обработки алюминиевых сплавов
  • Основные группы алюминиевых сплавов и их свойства
  • Сплавы алюминия с другими элементами
  • Сферы применения алюминиевых сплавов

Алюминиевые сплавы используются гораздо чаще, чем этот же металл в чистом виде. И тут ничего удивительного: они обладают гораздо большей прочностью, а также устойчивостью к коррозии и высоким температурам.

Комбинации с различными веществами наделяют те или иные сплавы конкретными характеристиками. В зависимости от требований к конечному продукту в алюминий добавляется один или несколько легирующих элементов. А чтобы не возникло путаницы, получившийся сплав маркируют определенным образом. То есть заказчику остается лишь выбрать наиболее подходящий для своих нужд металл.

Краткая характеристика алюминия и его сплавов

Впервые алюминий был получен учеными-химиками из Дании (Эрстедом) и Германии (Велером) в 1825 и 1827 годах соответственно. В промышленных масштабах производить металл стало возможным в 1886 году благодаря разработкам американца Чарльза Холла и француза Поля Эру. Стоимость алюминия вплоть до конца XIX века лишь ненамного уступала золоту.

В начале прошлого столетия алюминий использовался только в чистом виде. В 1906 году немецкий ученый Вильм термически упрочнил металл, добавив к нему медь (4 %), магний (0,5 %), марганец (0,5 %). Так появился первый сплав – дуралюмин. Алюминиевые сплавы, обладающие, помимо высокой прочности, небольшой плотностью, широко применяются в промышленности в настоящее время.

Классификация алюминиевых сплавов

Удельная прочность соединений алюминия (отношение временного сопротивления к плотности) значительно выше аналогичного параметра сталей. Благодаря этому алюминиевые соединения широко используются в ракето- и самолетостроении.

Для металла и его сплавов характерны высокая технологичность и простота деформации, что позволяет с легкостью создавать детали сложной конфигурации. К достоинствам материала относятся также устойчивость к коррозии и хорошая электропроводность (эта характеристика выше только у серебра, меди и золота). Применение сплавов алюминия в электронике и электротехнике обусловлено легкостью их раскатывания в фольгу.

Рекомендуем статьи по металлообработке

  • Марки сталей: классификация и расшифровка
  • Марки алюминия и области их применения
  • Дефекты металлический изделий: причины и методика поиска

Благодаря низкой температуре плавления при обработке материала не требуются значительные энергетические затраты, соответственно, производство и продукция обладают невысокой себестоимостью.

Судостроение

Алюминий и сплавы на его основе находят все более широкое применение в судостроении. Из алюминиевых сплавов изготовляют корпусы судов, палубные надстройки, коммуникацию и различного рода судовое оборудование.

Основное преимущество при внедрении алюминия и его сплавов по сравнению со сталью – снижение массы судов, которая может достигать 50 – 60 %. В результате представляется возможность повысить грузоподъемность судна или улучшить его тактико-технические характеристики (маневренность, скорость и т.д.).

Наиболее широкое применение среди алюминиевых сплавов для изготовления конструкций речного и морского флота находят магналиевые сплавы АМгЗ, АМг5, АМг61, а также сплавы АМц и Д16. Корпус судна повышенной грузоподъемности изготовляют из стали, тогда как надстройки и другое вспомогательное оборудование из алюминиевых сплавов. Имеет место изготовление рыболовецких баркасов из сплава АМг5 (обшивка).

Широкое применение в судостроении США находят свариваемые сплавы серии 5ххх и 6ххх. Там, где необходима высокая прочность (500 МПа), используются полуфабрикаты из сплавов серии 2xxx и 7ххх.

Классификация алюминиевых сплавов

Для классификации алюминиевых сплавов используется большое количество различных признаков. В зависимости от типа вспомогательных элементов выделяют следующие виды:

  • с добавлением присадок, в качестве которых выступают различные материалы, например, магний, цинк, хром, кремний и другие.
  • с добавлением интерметаллидов – в составе таких соединений присутствует несколько металлов, например, медь и магний, литий и магний.

В составе алюминиевых сплавов может присутствовать множество элементов, придающих материалу те или иные эксплуатационные характеристики.

По способу металлообработки выделяют следующие типы соединений алюминия:

  • Деформируемые алюминиевые сплавы – твердые соединения, которые благодаря высокой пластичности могут обрабатываться прессованием или ковкой. Эксплуатационные характеристики материала повышаются путем проведения дополнительной обработки.
  • Литейные – поступая на производство в жидком состоянии, они обрабатываются после того как затвердеют. Из литейных алюминиевых сплавов изготавливают корпусные детали различной конфигурации.

4 способа обработки алюминиевых сплавов

Отдельная группа представлена техническим алюминием, содержащим меньше 1 % посторонних примесей. Такой состав приводит к образованию на поверхности металла оксидной пленки, защищающей его от негативного воздействия окружающей среды. В то же время прочностные характеристики технического алюминия довольно низкие.

В зависимости от прочности соединения бывают:

  • сверхпрочными (от 480 МПа);
  • среднепрочными (от 300–480 МПа);
  • малопрочными (до 300 МПа);

Отдельная группа представлена дуралюминами, обладающими особыми эксплуатационными свойствами.

Строительство

Перспективность применения алюминиевых сплавов в строительных конструкциях подтверждается технико-экономическими расчетами и многолетней мировой практикой в области сооружения различных строительных объектов.

Внедрение алюминиевых сплавов в строительстве уменьшает металлоемкость, повышает долговечность и надежность конструкций при эксплуатации их в экстремальных условиях (низкая температура, землетрясение и т.п.). В зависимости от назначения строительных алюминиевых конструкций рекомендуются различные марки сплавов: АД1, АМц, АМг2, АД31, 1915 и др.

Здание со светопрозрачными конструкциями из алюминия

Рисунок 4 – Здание со светопрозрачными конструкциями из алюминия

Опыт, накопленный в США, подтверждает целесообразность использования алюминиевых сплавов в строительных конструкциях. На них расходуется больше алюминия, чем в любой другой отрасли промышленности. При этом предпочтение отдается внедрению свариваемых сплавов серии Зххх, 5ххх и 6ххх.

Маркировка алюминиевых сплавов

При определении марки алюминиевых сплавов можно столкнуться с определенными сложностями. Маркировка выполняется таким образом, чтобы вопросов при уточнении соединения не возникало. Составы имеют определенное буквенно-цифровое обозначение.

Особенности маркировки заключаются в следующем:

  • в начале стоят одна или несколько букв, указывающие на состав соединения;
  • маркировки включают в себя цифровой порядковый номер;
  • заканчиваться маркировка может также буквой, обозначающей особенности обработки материала (например, термической).

Ознакомимся с правилами маркировки на примере сплава Д17П. Первая буква Д обозначает состав сплава – дюралюминий. В составе всех дюралюминиев присутствуют определенные химические элементы, различающиеся по количественному содержанию. Порядковый номер 17 указывает на конкретный материал, обладающий определенными свойствами. Буква П в конце маркировки используется для обозначения способа обработки полунагартованного соединения, получаемого под давлением без предварительного нагрева металла, соответственно, прочностные характеристики будут составлять половину от максимально возможных.

VT-metall предлагает услуги:

Маркировка алюминиевых сплавов производится по ГОСТу 4784-97, определяющему основные требования к обозначению соединений.

Основные группы алюминиевых сплавов и их свойства

Автомобильный транспорт

Одним из основных требований к материалам, применяемым в автомобильном транспорте, является малая масса и достаточно высокие показатели прочности. Принимаются во внимание также коррозионная стойкость и хорошая декоративная поверхность материала.

Автомобиль

Рисунок 3 – Автомобиль

Высокая удельная прочность алюминиевых сплавов увеличивает грузоподъемность и уменьшает эксплуатационные расходы передвижного транспорта. Высокая коррозионная стойкость материала продляет сроки эксплуатации, расширяет ассортимент перевозимых товаров, включая жидкости и газы с высокой агрессивной концентрацией.

При изготовлении элементов каркаса, обшивки кузова полуприцепа автофургона, рефрижератора, скотовоза и т.п. перспективным материалом являются алюминиевые сплавы АД31, 1915 (прессованные профили) и сплавы АМг2, АМг5 (лист).

Находят применение алюминиевые сплавы АМц, АМгЗ и 1915 при изготовлении отдельных узлов легкового автомобиля (навесные детали, бамперы, радиаторы охлаждения, отопители).

В автомобилестроении США широко используются алюминиевые свариваемые сплавы серии Зххх, 5ххх и 6ххх.

Из прессованных полуфабрикатов сплавов 2014 и 6061 изготовляют балки, рамы тяжелых грузовых автомобилей. Панели и отдельные элементы из сплава 5052 поступают на изготовление кабины. В качестве обшивочного материала кузова грузовика используют лист из сплавов 5052, 6061, 2024, 3003 и 5154. Стойки кузова выполняются из прессованных полуфабрикатов сплавов 6061 и 6063. Магналиевые сплавы серии 5ххх (5052, 5086, 5154 и 5454) являются основным материалом при изготовлении автоцистерн.

Основные группы алюминиевых сплавов и их свойства

Для работы с алюминием и его соединениями необходимо ознакомиться со свойствами металла, поскольку они существенно влияют на сферу применения деталей и характеристики материала. Ранее мы говорили о классификации сплавов алюминия.

Далее расскажем о наиболее распространенных типах металла и их свойствах.

  • Сплавы с алюминием, медью и кремнием.

Соединение также известно под названием алькусин. Сплавы, в которых присутствуют медь и кремний, используются для изготовления деталей промышленного оборудования. Отличные технические свойства позволяют эксплуатировать их в условиях постоянной нагрузки.

  • Алюминиево-медные сплавы.

Технические характеристики составов, в которых присутствует медь, сравнимы с низкоуглеродистыми сталями. Основной недостаток заключается в плохой коррозионной устойчивости. Детали покрываются защитным составом, предохраняющим от негативного воздействия окружающей среды. Для улучшения качеств материала используют легирующие компоненты (марганец, железо, магний и кремний).

Алюминиево-медные сплавы

  • Алюминиево-кремниевые сплавы.

Эти соединения носят название силумина и служат для производства декоративных элементов. Для повышения характеристик алюминиевых сплавов используют натрий и литий.

  • Алюминиево-магниевые сплавы.

Присутствие в составе магния повышает прочностные характеристики материала, а также облегчает процесс сварки. Содержание магния не должно превышать 6 %. Более высокий процент снизит антикоррозионные свойства соединения. Для повышения прочности без снижения коррозионной устойчивости в составы добавляют марганец, ванадий, хром или кремний. Каждый дополнительный процент магния улучшает прочность на 30 МПа.

  • Алюминиево-марганцевые сплавы.

Для повышения устойчивости к коррозии в состав соединения добавляют марганец. Благодаря ему повышаются прочность и свариваемость материала. Кроме марганца в состав добавляют железо и кремний.

  • Сплавы с алюминием, цинком и магнием.

Высокими прочностными характеристиками, а также простотой обработки отличаются алюминиевые сплавы с магнием и цинком. Для улучшения свойств материала его подвергают термической обработке. Недостатком таких соединений является низкая антикоррозионная устойчивость. Для исправления этого минуса используют легирующий компонент – медь.

  • Авиаль.

В этих сплавах, помимо алюминия, содержатся магний и кремний. Соединения отличаются высокой пластичностью, коррозионной устойчивостью.

Сплавы алюминия с другими элементами

Соединения металла

Сплавы получается в результате искусственного добавления к алюминию других металлов с целью получения необходимых свойств. И на сегодняшний момент существует нескончаемое количество составов таких сплавов, имеющих самое широкое применение.

  • Наиболее известной сферой их применения является авиастроение. Для производства самолетов используются сплавы, состоящие из алюминия, цинка и магния, что в результате позволяет получить сверхпрочный и надежный материал.
  • Также нередко используются сплавы алюминия с железом, титаном, никелем.

Если вы захотите самостоятельно изготовить что-либо из алюминия, то следующее видео расскажет вам о его расплавке в домашних условиях:

Сплавы алюминия с другими элементами

Легирующими элементами, используемыми при изготовлении алюминиевых сплавов и улучшающими их качественные характеристики, являются также следующие.

Бериллий уменьшает окисление при термической обработке. Невысокое содержание бериллия (0,01–0,05 %) улучшает текучесть соединений алюминия, используемых в процессе производства деталей двигателей внутреннего сгорания (поршней и головок цилиндров).

Висмут, а также свинец, олово или кадмий, обладающие низкой температурой плавления, при добавлении в состав сплавов облегчают процесс резки металла. Эти компоненты способствуют образованию мягких легкоплавких фаз, обеспечивающих ломкость стружки и смазывание резца.

Соединения с добавлением галлия (0,01–0,1 %) используются для производства расходуемых анодов.

Небольшое количество железа (не более 0,04 %) добавляют в материал, используемый для изготовления проводов, за счет этого повышается прочность и ползучесть материала. Кроме того, железо снижает прилипание состава к стенкам форм при литье в кокиль.

Дюралюмины

Дюралюминий относится к группе упрочняемых сплавов. В его основе находится алюминий и медь, а также добавки в виде железа и кремния. Процентное содержание главного легирующего элемента составляет от двух до семи процентов. Причем полпроцента меди можно растворить в алюминии при температуре окружающей среды, а 5,7% — при эвтектической (548°С).

Термообработка дюралюминов осуществляется в несколько этапов. Прежде всего, его необходимо нагреть до значения, превышающего линию предельной растворимости (как правило, эта температура составляет около 500°С). Это позволит добиться структуры однородного раствора меди в алюминии. Полученное состояние сплава фиксируется при помощи его мгновенного охлаждения в воде комнатной температуры. Данный процесс называется закалкой. В итоге образуется пересыщенный раствор, отличающийся высокими значениями мягкости и пластичности.

Особенностью закаленной дюрали является нестабильная структура, в которой даже при комнатных условиях происходят определенные преобразования. Подобные изменения ведут к группированию атомов избыточной меди в растворе. Более того, последовательность расположения этих атомов очень схожа с порядком расположения кристаллов в соединении CuAl. В кристаллической решетке твердого раствора атомы располагаются неравномерно, поэтому в ней образуются искажения, которые способствуют увеличению показателей твердости, улучшению прочностных свойств и ухудшением пластичности. При этом об образовании химического соединения пока речи не идет, как и об отделении от твердого раствора. Все изменения, которым подвергается закаленный сплав в условиях окружающей среды, называются естественным старением.

Наиболее активно данный процесс осуществляется на протяжении первых часов, а его завершение наступает спустя шесть суток, хотя в некоторых случаях достаточно и четырех. При увеличении температуры сплава до отметки 150°С происходит искусственное старение. В этом случае сокращается время легирования, но упрочнение получается не таким эффективным, как в случае естественного старения. Этому есть объяснение: при повышенных температурных режимах процесс диффузии выполняется быстрее и проще. На этом фаза образования соединения CuAl завершается, что сопровождается его выделением из твердого раствора. Упрочняющий эффект получается не таким значимым, как в случае искажения структуры твердого сплава методом естественного старения.

Если сравнить итоги старения дюралюминия, осуществляемые при разных условиях, то становится предельно ясно, что увеличить прочностные характеристики металла больше всего удается при естественном варианте старения в течение четырех-шести дней.

Сферы применения алюминиевых сплавов

Алюминиевые сплавы широко применяются во многих сферах. Благодаря их эксплуатационным характеристикам они входят в пятерку наиболее распространенных соединений металла.

Сначала, благодаря легкости и прочности, их начали использовать при производстве дирижаблей и самолетов.

В настоящее время в связи с высокой температурой плавления соединения алюминия используют при производстве скоростных поездов. Поверхность во время движения на большой скорости нагревается, однако при этом не подвергается деформации.

Широко применяются металл и его соединения в судостроении, где им отдают предпочтение перед сталями. Корпуса из алюминия не подвержены обрастанию ракушками, которые отрицательно сказываются на обтекаемости судов и скорости их движения. Очистка стального корпуса требует значительных временных и финансовых затрат. Таким образом, первоначальные вложения в строительство алюминиевого корпуса окупаются благодаря более дешевой эксплуатации.

Сферы применения алюминиевых сплавов

Невысокая стоимость и небольшой удельный вес обеспечили востребованность материала в военной промышленности, к примеру, из него производят отдельные элементы стрелкового оружия. С использованием соединений алюминия изготавливают ракетное топливо.

Высокой электропроводностью обусловлено использование алюминиевых сплавов для производства проводов и деталей радиоприемников. Они подходят для изготовления различных габаритных проводников электрического тока (линий электропередач, оболочек высоковольтных кабелей, шин распределительных устройств), что вызвано их заметными преимуществами перед другими металлами. Например, для алюминиевых оболочек кабелей характерны большая прочность и меньшая плотность, чем для свинцовых. Страны с высокоразвитой промышленностью тратят около 15 % алюминия для удовлетворения электротехнических потребностей.

Металл в настоящее время продолжает использоваться для производства посуды. По-прежнему остаются востребованными алюминиевые вилки, ложки, кастрюли и емкости для жидкостей.

Алюминий нашел применение и в пищевой промышленности – в качестве пищевой добавки. Для обозначения в составе продуктов алюминия используют букву E. Металл выступает в роли красителя в кондитерских изделиях, предохраняет продукты от появления плесени. Различные продукты упаковывают в тонкую алюминиевую фольгу, толщина которой не превышает 0,009 мм. А алюминиевая лента толщиной 0,2-0,3 мм идет на производство консервных банок.

Одним из специфических вариантов использования алюминиевых сплавов являются атомные реакторы. Большая часть из них при работе использует тепловые нейтроны. Соответственно, конструкция реакторов должна состоять из металлов, слабо поглощающих такие частицы. К примеру, из алюминия, отличающегося также высокой коррозионной устойчивостью при воздействии горячей воды, перегретого пара, углекислого газа, которые чаще всего выступают в качестве источника тепла в реакторах.

Нефтяная и химическая промышленность

Освоение новых месторождений, увеличение глубины скважин выдвигают определенные требования к материалам, применяемым для изготовления деталей и узлов нефте- и газопромыслового оборудования и аппаратуры для переработки продуктов нефти.

Рисунок 5 – Нефтяная вышка

Высокая удельная прочность алюминиевых сплавов позволяет уменьшить массу бурильного оборудования, облегчить их транспортабельность и обеспечить прохождение глубоких скважин.

Коррозионностойкие алюминиевые сплавы дают возможность повысить эксплуатационную надежность бурильных, насосно-компрессорных и нефтегазопроводных труб. Повышенная сопротивляемость коррозионному растрескиванию позволяет применить алюминиевые сплавы при изготовлении емкостей для хранения нефти и ее продуктов.

Основным конструкционным материалом при изготовлении бурильных труб из алюминиевых сплавов является сплав марки Д16.

Высокую стойкость к сырой нефти и некоторым бензинам показали алюминиевые сплавы АМг2, AMr3, АМг5 и АМг6. Из перечисленных магналиевых сплавов наиболее технологичным сплавом для изготовления аппаратов является сплав АМг2, особенно при изготовлении конденсаторов и холодильников на нефтеперегонных заводах.

В США оборудование для нефтяной промышленности изготовляется из алюминиевых сплавов серии Зххх, 5ххх и 6ххх. В конструкции бурового оборудования применяют трубы из сплава 6063. Морские платформы собираются из труб 6061, 6063, а также из высокопрочных сплавов марок 2014 и 7075. Из алюминия АДОО, АДО и АД1 изготовляют емкости, колонны, конденсаторы и т.п. для производства уксусной кислоты, сульфирования жирных спиртов, хлората калия, натриевой и аммиачной селитры, синильной кислоты и т.д.

Химической промышленности рекомендованы алюминиевые сплавы АМц, АМг2, АМгЗ, АМг5 для изготовления сосудов, работающих под давлением при температурах от – 196 до +150 °С.

Из алюминия АДОО, АДО и АД1 изготовляют емкости, колонны, конденсаторы и т.п. для производства уксусной кислоты, сульфирования жирных спиртов, хлората калия, натриевой и аммиачной селитры, синильной кислоты и т.д.

В США в зависимости от условий эксплуатации аппаратуры химической промышленности применяют сплавы серий 1ххх, Зххх, 5ххх. В отдельных случаях для обеспечения наибольшей прочности применяют термически упрочняемые сплавы 2ххх и 7ххх с пониженной коррозионной стойкостью.

Емкости для хранения химических продуктов выполняют из сплавов высокой коррозионной стойкости – 1100 или 3003; сосуды высокого давления – из сплавов 5052 или 6063; тара, цистерны и другие виды оборудования для хранения уксусной кислоты, высокомолекулярных жирных кислот, спиртов и других продуктов – из сплавов 3003, 6061, 6063, 5052; емкости для озоносодержащих растворов удобрений из сплавов 3004; 5052 и 5454; емкости для хранения растворов нитрата аммония из сплавов 1100, 3003, 3004, 5050, 5454, 6061 и 6062 [3].

Сплавы, предназначенные для изготовления проволоки для холодной высадки

Обозначение марок Массовая доля элементов, %
буквенное цифровое Кремний Железо Медь Марганец Магний Хром Цинк Титан Прочие элементы Алюминий
Каждый Сумма
Si Fe Cu Mn Mg Cr Zn Ti Al
Д1П 1117 0,5 0,5 3,8-4,5 0,4-0,8 0,4-0,8 0,1 0,1 0,05 0,1 остальное
Д16П 1167 0,5 0,5 3,8-4,5 0,3-0,7 1,2-1,6 0,1 0,1 0,05 0,1 то же
Д19П 1197 0,3 0,3 3,2-3,7 0,5-0,8 2,1-2,6 Be: 0,0002-0,005 0,1 0,1 0,05 0,1 то же
АМг5П 1557 0,4 0,4 0,2 0,2-0,6 4,7-5,7 0,05 0,1 то же
В95П 1957 0,3 0,3 1,4-2,0 0,3-0,5 2,0-2,6 0,1-0,25 5,5-6,5 0,05 0,1 то же

Как производят крылатый металл

Производство металла можно разделить на две стадии.

  • Первая — добыча бокситов, их дробление и отделение кремния при помощи пара.
  • Вторая стадия: глинозем смешивают с расплавленным криолитом и воздействуют на смесь электротоком. В процессе реакции жидкий алюминий оседает на дне ванны.

Образовавшийся металл отливают в слитки; далее он отправляется потребителям или на производство сплавов и высокочистого алюминия.

Метод энергозатратный, «кушает» много электричества.

Бывает технический и сверхчистый

Полученный алюминий называется техническим или нелегированным. В нем содержание чистого металла не менее 99%. Его потребляет электронная промышленность, он необходим в производстве теплообменных и нагревательных устройств, осветительного оборудования.

Часть этого металла отправляется на дополнительную очистку, «рафинирование». В результате имеем металл высокой чистоты, с содержанием алюминия не менее 99,995%.

Его употребляют в электронике, в производстве полупроводников. Кабельное производство, химическое машиностроение сейчас не обойдется без сверхчистого алюминия.

Интересно: до открытия промышленного способа получения алюминия он был редкостью и стоил дороже золота. Нашего великого химика, Д.И. Менделеева, британцы почтили подарком. Это были аналитические весы (вещь, незаменимая для химика), у которых чашечки изготовили из золота и алюминия.

Металл для крыльев

Без такого металла, как алюминий, невозможно покорение неба. Крыльев людям не дано, а летать хочется человеку с давних времен. Не напрасно миф об Икаре живет с античных времен. Попытки взлететь предпринимались неоднократно.

Но прорыв случился в 1903 году, когда романтики неба и замечательные механики братья Райт подняли в воздух самолетик. Этот самолет открыл путь в небо.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]