Особенности состава, свойств и характеристик алюминия

Алюминий представляет собой самый распространенный металл в земной коре. Он относится к группе легких металлов, имеет небольшую плотность и температуру плавления. При этом пластичность и электропроводность находятся на высоком уровне, что обеспечивает его повсеместное использование. Итак, давайте узнаем, каковы удельная температура плавления алюминия и его сплавов (пр. в сравнении с железом и свинцом), тепло- и электропроводность, плотность, другие свойства, а также в чем особенности структуры сплавов алюминия и химического их состава.

Свойства крылатого металла

Алюминий (Aluminium) имеет несчастливый 13 номер в периодической таблице Менделеева. Однако на счастливую судьбу металла это не повлияло.

Алюминий элемент

Этот легкий серебристый металл послушно поддается механической обработке и литью, имеет большую тягучесть.

Редкая способность — быстро образовывать окисные пленки на поверхности чистого металла. Но эти пленки не слишком хорошо защищают от коррозии. Надежнее химическое и электрохимическое оксидирование. Формула оксидной пленки А12Оз.

Химические и физические характеристики алюминия:

  • плотность 2,7 г/см3;
  • температура плавления 660°С;
  • кипит цветной металл при температуре 2518°С;
  • строение кристаллической решетки гранецентрированное, кубическое;
  • степени окисления 0; +3.

С помощью металлического алюминия (его взаимодействия с оксидами металлов) получают трудновосстанавливаемые металлы. Этот метод называется алюминотермия.

Свойства атома
Название, символ, номерАлюминий / Aluminium (Al), 13
Группа, период, блок13, 3,
Атомная масса (молярная масса)26,9815386(8)[1] а. е. м. (г/моль)
Электронная конфигурация[Ne] 3s2 3p1
Электроны по оболочкам2, 8, 3
Радиус атома143 пм
Химические свойства
Ковалентный радиус121 ± 4 пм
Радиус Ван-дер-Ваальса184 пм
Радиус иона51 (+3e) пм
Электроотрицательность1,61 (шкала Полинга)
Электродный потенциал−1,66 В
Степени окисления0; +3
Энергия ионизации1‑я: 577,5 (5,984) кДж/моль (эВ)
2‑я: 1816,7 (18,828) кДж/моль (эВ)
Термодинамические свойства простого вещества
Термодинамическая фазаТвёрдое вещество
Плотность (при н. у.)2,6989 г/см³
Температура плавления660 °C, 933,5 K
Температура кипения2518,82 °C, 2792 K
Уд. теплота плавления10,75 кДж/моль
Уд. теплота испарения284,1 кДж/моль
Молярная теплоёмкость24,35[2] 24,2[3] Дж/(K·моль)
Молярный объём10,0 см³/моль
Кристаллическая решётка простого вещества
Структура решёткикубическая гранецентрированая
Параметры решётки4,050 Å
Температура Дебая394 K
Прочие характеристики
Теплопроводность(300 K) 237 Вт/(м·К)
Скорость звука5200 м/с
Номер CAS7429-90-5

Алюминий имеет один стабильный изотоп, 27Al.

Микроструктура алюминия

Неправда, но хорошо придумано

В печатных изданиях, а сейчас и в интернете гуляет история о крестьянине, который вел «крамольные беседы о полете на Луну». Крестьянина (или мещанина), по одним сведениям Петрова, по другим Никифорова, сослали в киргизский поселок Байконур» Якобы известие о факте напечатано был в Московских губернских новостях», в 1848 году. Сейчас, когда с космодрома Байконура ушли в космос не один десяток спутников и станций, этот факт выглядит пророческим и мистическим.

Вот только это неправда. Дотошные читатели перерыли подшивки этой газеты, и заметки такой не обнаружили. Это просто красивая легенда.

Алюминиевые сплавы, плюсы и минусы

Кодовый символ, указывающий, что алюминий может быть вторично переработан

Чистый алюминий в строительных конструкциях применять нецелесообразно. Прочностные характеристики у него «так себе». А вот алюминиевые сплавы — другое дело. Сейчас известны и используются около 60 сплавов. Можно выбрать для любых нужд, на любой вкус.

Классификация сплавов проводится по составу, свойствам, по способности к термической обработке.

Добавки меди, магния и марганца, цинка существенно улучшают характеристики сплава в сравнении с чистым металлом. Этими металлами чаще всего легируют алюминий. Титан, литий, ванадий, церий, скандий, некоторые редкоземельные элементы для легирования применяются реже, но свойства этих сплавов также востребованы в промышленности.

Дюраль

Дюралюмины — сплавы алюминия с медью (4%), магнием (0,5%) и небольшого количества железа, марганца, кремния. Недостаток дюралей — подверженность коррозии; с ней справляются, применяя анодирование, плакировку, авиационную грунтовку, окрашивание.

Востребованные свойства сплава: хорошая статическая и усталостная прочность, высокая вязкость разрушения.

Широко применяется в деталях и конструкциях, где большую роль играет масса изделия. Главные потребители сплава — авиация, судостроение, космонавтика.

Для любознательных: дюралюминий придумали в 1909 году. «Папа» сплава — А. Вильм.

Сплав 7075

Разрабатывался компанией Sumitomo Metal Corporation (Япония) в строжайшей тайне.

Представляет соединение алюминия с цинком (до 6%), магния (2-2,5%), меди (до 1,5%). В тот же сплав добавлены титан, кремний, марганец, хром, железо. Добавки эти составляют не более 0,5%, но свой вклад в свойства сплава вносят.

Сплав сравним по прочности со сталью, но легче ее в три раза.

Модификации сплава:

  • 7075-0;
  • 7075-06;
  • 7075-Т651;
  • 7075-Т7;
  • 7075-АСР.

Сплавы устойчивы к коррозии, хорошо полируются.

Алюминий металл

Применяются в производстве винтовок для армии и граждан. Промышленности автомобильная, авиационная, морская активно используют сплав. Его минус — достаточно высокая цена.

Сплавов разных много

В России довольно много сплавов с разными свойствами:

  • D1, D16, 1161, 1163 — алюминий, магний, медь;
  • АМГ1 — АМГ6, сплав алюминия и магния;
  • AD31, AD33, AD35, AB — алюминий, кремний, магний. Список легко продолжить.

Старость в радость

Не всегда старость — это плохо. Металл — как человек или вино; с возрастом свойства алюминия меняются; он становится лучше, крепче, сильнее.

Естественное старение металла происходит при нормальных условиях; можно сказать, что металл «дозревает».

Искусственное старение проходит при термообработке и пластическом деформировании.

Термическая обработка бывает разных видов. Выбор зависит от назначения будущего сплава.

Вид термообработкиЧто дает термообработка
Закалка с полным искусственным старениемВысокая прочность сплава, но некоторое снижение пластичности
Закалка со стабилизирующим старениемХорошая прочность, довольно высокая стабильность структуры
Закалка с последующим смягчающим отпускомХорошая пластичность, но снижение прочности сплава
Искусственное старениеПовышает прочность сплава, улучшает возможность обработки резанием
ОтжигПовышение пластичности, уменьшение остаточных напряжений металла
ЗакалкаУлучшает прочностные характеристики
Закалка и неполное искусственное старениеПовышает прочность при сохранении пластичности

Область применения

Алюминиевая плита. Обладает шумоизолирующими свойствами, защищает от вибрации, огня и влаги. Из нее изготавливаются различные строительные конструкции, декоративные элементы крыш, окантовки, круги, балки, профили. Она – важный элемент в машиностроении, где ее используют как основу для несущих стоек. В авиационной промышленности эта продукция применяется для облицовки фюзеляжей и в самой конструкции планеров. Также этот продукт важен для получения топливного и гидравлического оборудования.

Алюминиевый лист. Благодаря разнообразию форм используется в декорировании зданий. Также он востребован при изготовлении каркасов, фильтров и вентиляционных коробов. Из него производят баки, канистры для продуктов, контейнеры, столешницы, мойки. Материал не вступает в реакции с пищей, не выделяет опасных веществ и не влияет на вкусовые качества.

Алюминиевая труба. Незаменима при обустройстве трубопроводов для добычи нефти, так как не вступает в реакции с веществами. Благодаря хорошей пропускной способности такая продукция – оптимальный вариант при разработке канализации и водопровода. Вода по ним двигается быстро, без образования пробок.

Алюминиевая проволока. Применяется для сварочных работ, при монтаже электролиний, в электротехнике, в системах грозозащиты. Является сырьем в производстве кабельной и проводниковой продукции. Также из нее производят инвентарь для торговли, элементы фасадов, дизайнерские детали для домов, посуду.

Алюминиевые уголки. Востребованы при изготовлении корпусной и мягкой мебели, рекламного оборудования, шкафов, стеллажей. Это любимый элемент дизайнеров, так как он не просто защищает мебельные конструкции, но и подчеркивает их оригинальность. Небольшие и узкие разновидности также востребованы при установке оконных рам. Крупные изделия – при монтаже крупногабаритных конструкций.

Алюминиевый пруток. Не намагничивается, не боится перепадов температуры, имеет хорошую электропроводность и легкий вес. Используется в станкостроении и машиностроении. Применяется в качестве заготовок для производства крепежей, стойких к агрессивным веществам. Из него получают детали редукторов, клапаны, силовые элементы, компоненты сварных конструкций, опорную арматуру.

алюминиевые изделия

Минералы, месторождения…а самородный алюминий?

Запасы алюминия в природе огромны. Среди металлов он держит первое место по распространенности. Но «общительность», активность элемента привела к тому, что в чистом виде металл практически отсутствует.

Производство алюминия в миллионах тонн

Минералов, содержащих алюминий, много:

  • бокситы;
  • глиноземы;
  • полевые шпаты;
  • нефелины;
  • корунды.

Так что добыча алюминиевого сырья не составляет большого труда.

Если все запасы на Земле истощатся (что сомнительно), то алюминий можно добывать из морской воды. Там его содержание составляет 0,01 мг/л.

Кто захочет увидеть самородный алюминий, тому придется опускаться в жерла вулканов.

Происхождением такой металл из самых глубин нашей планеты.

Теплопроводность — алюминий — Большая Энциклопедия Нефти и Газа, статья, страница 2

Теплопроводность — алюминий

Cтраница 2

Прочность алюминиевой оболочки в несколько раз выше свинцовой, алюминий в 4 2 раза легче свинца ( удельный вес 2 7 и 11 4 соответственно), теплопроводность алюминия примерно в шесть раз выше, чем у свинца, его сопротивление усталости при вибрации в 25 раз больше, чем у свинца. В четырехпроводных сетях переменного тока напряжением до 1000 в с глухозаземленной нейтралью допускается использование алюминиевой оболочки в качестве нулевого рабочего провода.  [16]

В этом уравнении di 15 5 — 10 — 3 ( м) — наружный диаметр графитового баллона; d0 1 1 45 — 10 — 3 ( м) — диаметр сечения испытуемого расплавленного металла; q ( z) ( ккал / м2 — час) — тепловой поток на наружной поверхности графитового баллона; К AI и гр ( ккал / м — час — град) — соответственно коэффициенты теплопроводности алюминия и графита.  [17]

Из металлов лучше всего проводят тепло серебро и медь. Теплопроводность алюминия примерно в 2 5 раза, железа в в раз, свинца в 12 раз меньше, чем меди.  [18]

Корродирующее действие некоторых компонентов флюса на алюминий нейтрализуются промывкой шва и поверхности деталей 10 % — ным раствором азотной кислоты в теплой воде и в последующем горячей водой. Теплопроводность алюминия почти в 5 раз, а теплоемкость в 2 раза больше, чем стали, поэтому при сварке алюминия необходимо поддерживать более высокую температуру пламени, чем температура плавления алюминия.  [19]

Теплопроводность алюминия в 3 раза больше, чем у стали, коэффициент расширения в 2 раза превышает коэффициент расширения стали.  [21]

Кристаллическая решетка алюминия состоит, как и у многих других металлов, из гра-нецентрированных кубов ( см. стр. Теплопроводность алюминия вдвое больше теплопроводности железа и равна половине теплопроводности меди. Его электропроводность намного выше электропроводности железа и достигает 60 % электропроводности меди.  [22]

Из металлов лучше всего проводят тепло серебро и медь. Теплопроводность алюминия примерно в 2 5 раза, железа в б раз, свинца в 12 раз меньше, ч м меди.  [23]

С понижением чистоты алюминия теплопроводность уменьшается, а с повышением температуры несколько увеличивается. При 100 теплопроводность алюминия составляет — 66 5 % теплопроводности серебра.  [24]

Если это количество теплоты известно, то для сечения z по замеренному значению градиента температур в нем можно рассчитать величину коэффициента теплопроводности образца. Окончательный расчет искомой величины коэффициента теплопроводности алюминия состоит в расчете поправки для коэффициента теплопроводности образца на теплоту, проходящую по стенкам графитового баллона.  [25]

Атомная структура титана, его большое сродство к электрону оказывают сильное влияние на такие свойства, как электропровод ность и теплопроводность. Теплопроводность его в 8 — 10 раз меньше теплопроводности алюминия. Это имеет существенное значение, например, при обработке металла резанием.  [27]

Модуль упругости титана почти вдвое меньше модуля упругости железа, находится на одном уровне с модулем медных сплавов и значительно выше, чем у алюминия. Теплопроводность титана низкая: она составляет около 7 % от теплопроводности алюминия и 16 5 % от теплопроводности железа. Это необходима учитывать при нагреве металла для обработки давлением и при сварке. Электросопротивление титана примерно в 6 раз больше чем у железа и в 20 раз больше, чем у алюминия.  [28]

Модуль упругости титана почти вдвое меньше модуля упругости железа, находится на одном уровне с модулем медных сплавов и значительно выше, чем у алюминия. Теплопроводность, титана низкая: она составляет около 7 % от теплопроводности алюминия и 16 5 % от теплопроводности железа.  [29]

Стеклопласты на основе фенольных смол имеют теплопроводность такого же порядка. Для сравнения следует заметить, что теплопроводность стали равна, 40, а теплопроводность алюминия находится в пределах от 175 до 200 ккал / м-ч-град.  [30]

Страницы:      1    2    3    4

www.ngpedia.ru

Как производят крылатый металл

Производство металла можно разделить на две стадии.

  • Первая — добыча бокситов, их дробление и отделение кремния при помощи пара.
  • Вторая стадия: глинозем смешивают с расплавленным криолитом и воздействуют на смесь электротоком. В процессе реакции жидкий алюминий оседает на дне ванны.

Образовавшийся металл отливают в слитки; далее он отправляется потребителям или на производство сплавов и высокочистого алюминия.

Метод энергозатратный, «кушает» много электричества.

Бывает технический и сверхчистый

Полученный алюминий называется техническим или нелегированным. В нем содержание чистого металла не менее 99%. Его потребляет электронная промышленность, он необходим в производстве теплообменных и нагревательных устройств, осветительного оборудования.

Часть этого металла отправляется на дополнительную очистку, «рафинирование». В результате имеем металл высокой чистоты, с содержанием алюминия не менее 99,995%.

Его употребляют в электронике, в производстве полупроводников. Кабельное производство, химическое машиностроение сейчас не обойдется без сверхчистого алюминия.

Интересно: до открытия промышленного способа получения алюминия он был редкостью и стоил дороже золота. Нашего великого химика, Д.И. Менделеева, британцы почтили подарком. Это были аналитические весы (вещь, незаменимая для химика), у которых чашечки изготовили из золота и алюминия.

Металл для крыльев

Без такого металла, как алюминий, невозможно покорение неба. Крыльев людям не дано, а летать хочется человеку с давних времен. Не напрасно миф об Икаре живет с античных времен. Попытки взлететь предпринимались неоднократно.

Но прорыв случился в 1903 году, когда романтики неба и замечательные механики братья Райт подняли в воздух самолетик. Этот самолет открыл путь в небо.

Добыча

После кислорода и кремния этот металл – наиболее распространенный элемент в земной коре, где он присутствует в виде соединений с другими элементами. Его получают из алюминиевых руд. Наиболее высокое содержание (50% оксидов этого металла+глинозем, содержащий этот компонент) находится в бокситах, которые залегают на поверхности земли. Наилучшие залежи этих минералов расположены в экваториальных и тропических регионах.

Для их добычи используется сложное оборудование: краны, машины для раздачи глинозема, установка по газоочистке, электролизер. Также в ходе процедуры задействованы просторные помещения и мощная электросеть. Поэтому заводы по производству этого продукта обычно расположены вблизи электростанций. В современных условиях этот металл получают благодаря процессу Холла-Эру.

Где применяется

Применение легкого и прочного металла необходимо не только в авиации.

Алюминиевый прокат

В пуленепробиваемых и бронированные стеклах, экранчиках смартфонов присутствует сапфир. У таких стекол высокая прочность на сжатие.

Познавательно: ученые продолжают разработку видов стекол, обладающих противопульной устойчивостью при меньших толщине и весе. Перспективным направлением считается прозрачная броня на основе монокристалла сапфира.

Из алюминия делают фольгу, которую используют в электрических конденсаторов. Домохозяйки с удовольствием запекают в фольге вкусняшки для домашних. Кастрюли, сковородки, другие изделия для домашнего хозяйства производят из «крылатого металла».

посуда из алюминия

Тонко молотый порошок металла используют для производства прочной краски.

Вы удивитесь, но алюминиевая кастрюлька в кухне, самолет и перстень с сапфиром — родня. В каждом есть наш герой.

Удивительно: железнодорожный транспорт на треть возит сам себя. Вес груженого товарного вагона на треть состоит из веса вагона. Про пассажирские вагоны и говорить нечего, вес людей в них всего 5%, остальное приходится на вагон.

Оксид алюминия — это корунд. А к ним относятся сапфиры, рубины, изумруды — все эти короли драгоценных камней содержат алюминий. Сам корунд используют как наждак.

Соединение медных и алюминиевых проводов

В последнее время в быту и промышленности начало использоваться электрооборудование все более высокой мощности. Во времена СССР проводка изготавливалась в основном из дешевого алюминия. Новым требованиям ее эксплуатационные характеристики, к сожалению, уже не соответствуют. Поэтому сегодня в быту и в промышленности очень часто алюминиевые провода меняются на медные. Основным преимуществом последних, помимо тугоплавкости, является то, что при окислительном процессе их токопроводящие свойства не уменьшаются.

Часто при модернизации электросетей алюминиевые и медные провода приходится соединять. Делать это напрямую нельзя. Собственно, электропроводность алюминия и меди различается не слишком сильно. Но только у самих этих металлов. Окислительные же пленки у алюминия и меди свойства имеют неодинаковые. Из-за этого значительно снижается проводимость в месте соединения. Окислительная пленка у алюминия отличается гораздо большим сопротивлением, чем у меди. Поэтому соединение этих двух разновидностей проводников должно производиться исключительно через специальные переходники. Это могут быть, к примеру, зажимы, содержащие пасту, защищающую металлы от появления окиси. Данный вариант переходников обычно используется при на улице. В помещениях чаще применяются ответвительные сжимы. В их конструкцию входит специальная пластина, исключающая прямой контакт между алюминием и медью. При отсутствии таких проводников в бытовых условиях вместо скручивания проводов напрямую рекомендуется использовать шайбу и гайку в качестве промежуточного «мостика».

Удельная электропроводность некоторых веществ (таблица)

Удельная проводимость приведена при температуре +20 °C:

ВеществоСм/мВеществоСм/мВеществоСм/мВеществоСм/мВеществоСм/м
серебро62 500 000молибден18 500 000олово8 330 000ртуть1 040 000мрамор10−8
медь59 500 000вольфрам18 200 000сталь литая7 690 000нихром893 000стекло10−11
золото45 500 000цинк16 900 000свинец4 810 000графит125 000фарфор10−14
алюминий38 000 000никель11 500 000нейзильбер3 030 000вода морская3кварцевое стекло10−16
магний22 700 000железо чистое10 000 000константан2 000 000земля влажная10−2янтарь10−18
иридий21 100 000платина9 350 000манганин2 330 000вода дистилл.10−4

Прокат и низкосортный материал

Электротехнический алюминий, полученный в ходе литейного производства, принимают отдельно. Обычно это узлы для станков, автомобильные, самолетные элементы. Поршневой лом содержит кремний. Пункты проката принимают в Москве электротехнический алюминий с никелем, если компонента не более 2,8%.

Низкий сорт электротехнического алюминия – дробленый, стружка. Материал сортируют по типу сплава. Отдельный класс – разносортная стружка.

Особенности сдаваемого алюминия

Высоко ценится на пунктах проката в Москве электротехнический алюминий, очищенный от изоляции. При наличии трансформаторов их обязательно убирают с шины. Жилы очищают механически, поскольку обжиг ведет к расплавлению, появлению потеков на металле. Недопустимо наличие бумаги.

Самый ценный алюминий – блестящий, чистый. Наличие масла – повод снижения стоимости из-за засора. Если внутри присутствует жила из стали, необходима разделка. Не принимают изделия со следами окисления, краски. Перед сдачей необходимо удалить проволочную решетку, поврежденные части, содержащие примеси элементы.

Источники и примеры металлолома

Электротехнический алюминий широко распространен. Это тонкие или толстые провода, кабели, используемые в проводке в жилищах, крупных коммуникационных сетях. В новых системах алюминиевые детали встречаются реже долговечной меди, а вот в старых широко распространены. Поскольку многие меняют проводку на медную, количество электротехнического алюминия, годного на вторсырье, велико.

Важно и полезно

Сдавать электротехнический алюминий в Москве могут частные лица, предприятия, крупные компании

Это не только финансово выгодно, но и важно для экологии. Вторичная переработка, утилизация металлических сплавов помогает защитить среду, сохранить баланс планеты, уберечь человека от опасностей, связанных с окислением металла

Переработанный алюминий используется в производственных процессах, что экономит затраты, бережет ресурсы.

◄ Назад к новостям

Электропроводность и носители тока

Электропроводность всех веществ связана с наличием в них носителей тока (носителей заряда) — подвижных заряженных частиц (электронов, ионов) или квазичастиц (например, дырок в полупроводнике), способных перемещаться в данном веществе на большое расстояние, упрощенно можно сказать, что имеется в виду что такая частица или квазичастица должна быть способна пройти в данном веществе сколь угодно большое, по крайней мере макроскопическое, расстояние, хотя в некоторых частных случаях носители могут меняться, рождаясь и уничтожаясь (вообще говоря, иногда, возможно, и через очень небольшое расстояние), и переносить ток, сменяя друг друга.

Поскольку плотность тока определяется для одного типа носителей формулой:

j→=qnv→cp.,{\displaystyle {\vec {j}}=qn{\vec {v}}_{cp.},} где q{\displaystyle q} — заряд одного носителя, n{\displaystyle n} — концентрация носителей, v→cp.{\displaystyle {\vec {v}}_{cp.}} — средняя скорость их движения,

или j→=∑iqiniv→icp.{\displaystyle {\vec {j}}=\sum _{i}q_{i}n_{i}{\vec {v}}_{icp.}} для более чем одного вида носителей, нумеруемых индексом i,{\displaystyle i,} принимающим значение от 1 до количества типов носителей, у каждого из которых может быть свой заряд (возможно отличающийся величиной и знаком), своя концентрация, своя средняя скорость движения (суммирование в этой формуле подразумевается по всем имеющимся типам носителей), то, учитывая, что (установившаяся) средняя скорость каждого типа частиц при движении в конкретном веществе (среде) пропорциональна приложенному электрическому полю (в том случае, когда движение вызвано именно этим полем, что мы здесь и рассматриваем):

v→cp.=μE→,{\displaystyle {\vec {v}}_{cp.}=\mu {\vec {E}},} где μ{\displaystyle \mu } — коэффициент пропорциональности, называемый подвижностью и зависящий от вида носителя тока в данной конкретной среде.

Отсюда следует, что для электропроводности справедливо выражение:

σ=qnμ,{\displaystyle \sigma =qn\mu ,}

или:

σ=∑iqiniμi{\displaystyle \sigma =\sum _{i}q_{i}n_{i}\mu _{i}} — для более чем одного вида носителей.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]