Никель сернокислый в мешках. Водные растворы солей никеля(II) содержат ион гексаакваникеля(II) [Ni(H2O)6]2+. При добавлении к раствору, содержащему эти ионы, аммиачного раствора происходит осаждение гидроксида никеля (II), зелёного желатинообразного вещества. Этот осадок растворяется при добавлении избыточного количества аммиака вследствие образования ионов гексааминникеля(II) [Ni(NH3)6]2+.
Никель образует комплексы с тетраэдрической и с плоской квадратной структурой. Например, комплекс тетрахлороникелат (II) [NiCl4]2− имеет тетраэдрическую структуру, а комплекс тетрацианоникелат(II) [Ni(CN)4]2− имеет плоскую квадратную структуру.
В качественном и количественном анализе для обнаружения ионов никеля (II) используется щелочной раствор бутандиондиоксима, известного также под названиями диметилглиоксим и реактив Чугаева. То, что это вещество является реактивом на никель, установил в 1905 году Л. А. Чугаев. При его взаимодействии с ионами никеля (II) образуется красное координационное соединение бис(бутандиондиоксимато)никель(II). Это — хелатное соединение, и бутандиондиоксимато-лиганд является бидентатным.
Медь – коротко про теплопроводность
Теплопроводностью называют процесс переноса энергии частиц (электронов, атомов, молекул) более нагретых участков тела к частицам менее нагретых его участков. Такой теплообмен приводит к выравниванию температуры. Вдоль тела переносится только энергия, вещество не перемещается. Характеристикой способности проводить тепло является коэффициент теплопроводности, численно равный количеству теплоты, которая проходит через материал площадью 1 м
2
, толщиной 1 м, за 1 секунду при единичном градиенте температуры.
Коэффициент теплопроводности меди при температуре 20–100 °С составляет 394 Вт/(м*К) – выше только у серебра. Стальной прокат уступает меди по этому показателю почти в 9 раз, а железо – в 6. Различные примеси по-разному влияют на физические свойства металлов. У меди скорость передачи тепла снижается при добавлении в материал или попадании в результате технологического процесса таких веществ, как:
- алюминий;
- железо;
- кислород;
- мышьяк;
- сурьма;
- сера;
- селен;
- фосфор.
Высокая теплопроводность характеризуется быстрым распространением энергии нагрева по всему объему предмета. Эта способность обеспечила меди широкое применение в любых системах теплообмена. Ее используют при изготовлении трубок и радиаторов холодильников, кондиционеров, вакуумных установок, автомашин для отвода избыточного тепла охлаждающей жидкости. В отопительных приборах подобные изделия из меди служат для обогрева.
Способность меди проводить тепло снижается при нагреве. Значения коэффициента теплопроводности меди в воздухе зависит от температуры последнего, которая влияет на теплоотдачу (охлаждение). Чем выше температура окружающей среды, тем медленнее остывает металл и ниже его теплопроводность. Поэтому во всех теплообменниках используют принудительный обдув вентилятором – это повышает эффективность работы устройств и одновременно поддерживает тепловую проводимость на оптимальном уровне.
Это интересно: Плотность и удельный вес меди – единицы измерения, расчет веса
Минеральная вата: характеристики и свойства
Теплопроводность и особенности минеральной ваты
Теплопроводность минеральной ваты зависит от марки и состава. В среднем показатели равны 0,034-0,05 Вт/м*К. Данные очень низкие, поэтому минеральная вата является прекрасным теплоизоляционным материалом.
Более рыхлая структура минваты имеет более низкий уровень теплопроводности, поэтому тепло лучше задерживается в воздушных «подушках».
У тяжелой минваты теплопроводность равна 0,48-0,55 Вт/м*К, а у легкой (с рыхлой структурой) теплопроводность составляет 0,035-0,047 Вт/м*К. Сравнить коэффициент теплопроводности минеральной ваты с различными видами утеплителей поможет таблица 1.
Название материала | Коэффициент теплопроводности, Вт/м*К |
Пенополиуретан | 0,025 |
Вспененный каучук | 0,03 |
Легкие пробковые листы | 0,035 |
Стекловолокно | 0,036 |
Пенопласт | 0,037 |
Пенополистирол | 0,04 |
Поролон | 0,04 |
Легкая минеральная вата | 0,039-0,047 |
Стекловата | 0,05 |
Хлопковая вата | 0,055 |
Чем ниже значение теплопроводности, тем лучше утеплитель. В сравнении с пенополистиролом и пенопластом, минеральная вата дает менее эффективные энергоемкие показатели. Но, если сравнить огнестойкость и вредность этих утеплителей, то минвата явно выигрывает.
Одинаково сохраняют тепло:
- пенополистирол экструдированный (40 кг/м 3 ) при толщине слоя 95 мм;
- минеральная вата (125 мг/м 3 ) — 100 мм;
- ДСП (400 кг/м 3 ) — 185 мм;
- дерево (500 кг/м 3 ) — 205 мм.
Минеральная вата имеет низкий коэффициент теплопроводности, поэтому используется везде. Ее используют для утепления фасадов зданий, для внутреннего и наружного утепления.
Выбор минваты и расчет толщины утеплителя
Любое здание имеет свою норму теплосопротивления. Цифры зависят от климатической зоны и отличаются, исходя из региона.
У каждого утеплителя есть свой уровень теплопроводимости
Поэтому важно создать комфортные теплоизоляционные условия, которые сократят потребление энергии на отопление и охлаждение помещения
Если здание уже построено, расчеты нужно проводить, исходя из типа материала, его сечения, провести расчет теплопроводности, узнать цифры по теплоизоляции. Для домов, которые только строятся, больше возможностей для выбора стройматериалов, утеплителей и отделки.
Для расчетов толщины утеплителя нужно знать три цифры:
- региональные стандарты теплосопротивления зданий;
- коэффициент теплосопротивления стройматериала сооружения;
- коэффициент теплопроводности утеплителя.
Расчет проводите по формуле:
K = R/N,
где K – цифра теплосопротивления стены; R — толщина слоя утеплителя; N — коэффициент теплопроводности.
Эта формула поможет рассчитать теплосопротивление стены. И, на основе полученных данных, можно вычислить, какая нужна теплоизоляция по толщине. Полный расчет толщины утеплителя вы найдете в статье «Толщина утеплителя для стен».
Технические характеристики минеральной ваты как утеплителя
Каждый теплоизоляционный материал хорош по-своему. Минеральная вата в том числе.
Даже больше: она во многом лучше другим утеплителей, т.к. экологична, не вредит здоровью, проста в монтаже и долго сохраняет свои эксплуатационные свойства.
Для примера в таблице 2 сравним технические характеристики минеральной ваты и экструдированного пенополистирола.
Наименование характеристики | Минеральная вата | Экструдированный пенополистирол |
Прочность на сжатие при 10% линейной деформации, МПа | 37-190 (+/- 10%) | 28-53 (+/- 10%) |
Водопоглощение по объему за 24 часа | менее 0,4 | 0,2-0,4 |
Время самостоятельного горения, не более, c | не горючий материал | разгалаются ядовитые газы |
Пожарно-технические характеристики по СНиП 21-01-97 | НГ, Т2 | Г1, Д3, РП1 |
Диапазон рабочих температур, °С | -180 до +650°С |
При t ≥ 250°С связующее испаряется. Плавится при 1000°С
-50 до +75 °С
При 200-250°С тепла разлагаются токсичные вещества
Коэффициент паропроницаемости, мг/(м.ч. Па) 0,31-0,032 0,007-0,012
Безопасность + –
Тепловое сопротивление 0,036-0,045 0,03-0,033
Звуконепроницаемость и ветрозащитное действие + +
Влагостойкость + +
Высокая стойкость к нагрузкам – +
Сохранение стабильных размеров – +
Долговечность 50 лет (фактическая – 10-15 лет) 50 лет (фактическая – более 20 лет)
Удобство использования + +
Трудновоспламеняемость + –
Что такое теплопроводность
Данный термин означает способность различных материалов к обмену энергией, которая в этом случае представлена теплом. При этом передача энергии проходит от более нагретой части к холодной и происходит за счет:
- Молекул.
- Атомов.
- Электронов и других частиц структуры металла.
Теплопроводность нержавеющей стали будет существенно отличаться от аналогичного показателя другого металла — например, коэффициент теплопроводности меди будет иным, нежели у стали.
Для обозначения этого показателя используется специальная величина, именуемая коэффициентом теплопроводности. Она характеризуется количеством теплоты, которое может пройти через материал за определенную единицу времени.
Показатели для стали
Теплопроводность может существенно отличаться в зависимости от химического состава металла. Коэффициент данной величины у стали и меди будет разным. Кроме этого, при повышении или уменьшении концентрации углерода изменяется и рассматриваемый показатель.
Существуют и другие особенности теплопроводности:
- Для стали, которая не имеет примесей, значение составляет 70 Вт/(м* К).
- У углеродистых и высоколегированных сталей проводимость намного ниже. За счет увеличения концентрации примесей она существенно снижается.
- Само термическое воздействие также может оказывать воздействие на структуру металла. Как правило, после нагрева структура меняет значение проводимости, что связано с изменением кристаллической решетки.
Коэффициент теплопроводности алюминия значительно выше, что связано с более низкой плотностью этого материала. Теплопроводность латуни также отличается от соответствующего показателя стали.
Понятие термического сопротивления и коэффициента теплопроводности
Если теплопроводность характеризует способность металлов передавать температуру тел от одной поверхности к иной, то термическое сопротивление показывает обратную зависимость, т.е. возможность металлов препятствовать такой передаче, иначе выражаясь, – сопротивляться. Высоким термическим сопротивлением обладает воздух. Именно он, больше всего, препятствует передаче тепла между телами.
Количественную характеристику изменения температуры единицы площади за единицу времени на один градус (К), называют коэффициентом теплопроводности. Международной системой единиц принято измерять этот параметр в Вт/м*град. Эта характеристика очень важна при выборе металлических изделий, которые должны передавать тепло от одного тела к другому.
Коэффициент теплопроводности металлов при температура, °С
Влияние концентрации углерода
Концентрация углерода в стали влияет на величину теплопередачи:
- Низкоуглеродистые стали имеют высокий показатель проводимости. Именно поэтому они используются при изготовлении труб, которые затем применяются при создании трубопровода системы отопления. Значение коэффициента варьирует в пределе от 54 до 47 Вт/(м* К).
- Средним коэффициентом для распространенных углеродистых сталей является значение от 50 до 90 Вт/(м* К). Именно поэтому подобный материал используется при изготовлении деталей различных механизмов.
- У металлов, которые не содержат различных примесей, коэффициент составляет 64 Вт/(м* К). Это значение несущественно изменяется при термическом воздействии.
Таким образом, рассматриваемый показатель у легированных сплавов может меняться в зависимости от температуры эксплуатации.
Понятие термического сопротивления и коэффициента теплопроводности
Если теплопроводность характеризует способность металлов передавать температуру тел от одной поверхности к иной, то термическое сопротивление показывает обратную зависимость, т.е. возможность металлов препятствовать такой передаче, иначе выражаясь, – сопротивляться. Высоким термическим сопротивлением обладает воздух. Именно он, больше всего, препятствует передаче тепла между телами.
Количественную характеристику изменения температуры единицы площади за единицу времени на один градус (К), называют коэффициентом теплопроводности. Международной системой единиц принято измерять этот параметр в Вт/м*град. Эта характеристика очень важна при выборе металлических изделий, которые должны передавать тепло от одного тела к другому.
Значение в быту и производстве
Почему важно учитывать коэффициент теплопроводности? Подобное значение указывается в различных таблицах для каждого металла и учитывается в нижеприведенных случаях:
При изготовлении различных теплообменников. Тепло является одним из важных носителей энергии. Его используют для обеспечения комфортных условий проживания в жилых и иных помещениях. При создании отопительных радиаторов и бойлеров важно обеспечить быструю и полную передачу тепла от теплоносителя к конечному потребителю.- При изготовлении отводящих элементов. Часто можно встретить ситуацию, когда нужно провести не подачу тепла, а отвод. Примером назовем случай отвода тепла от режущей кромки инструмента или зубьев шестерни. Для того чтобы металл не терял свои основные эксплуатационные качества, обеспечивается быстрый отвод тепловой энергии.
- При создании изоляционных прослоек. В некоторых случаях материал не должен проводить передачу тепловой энергии. Для подобных условий эксплуатации выбирается металл, который обладает низким коэффициентом проводимости тепла.
Определяется рассматриваемый показатель при проведении испытаний в различных условиях. Как ранее было отмечено, коэффициент проводимости тепла может зависеть от температуры эксплуатации. Поэтому в таблицах указывается несколько его значений.
Теплопроводность стали, меди, алюминия, никеля и их сплавов
Обычное железо и цветные металлы имеют разное строение молекул и атомов. Это позволяет им отличаться друг от друга не только механическими, но и свойствами теплопроводности, что, в свою очередь, влияет на применение тех или иных металлов в различных отраслях хозяйства.
Таблица 2
Сталь имеет коэффициент теплопроводности, при температуре окружающей среды 0 град. (С), равный 63, а при увеличении градуса до 600, он снижается до 21 Вт/м*град. Алюминий, в таких же условиях, наоборот – увеличит значение от 202 до 422 Вт/м*град. Сплавы из алюминия, будут также повышать теплопроводность, по мере увеличения температуры. Только величина коэффициента будет на порядок ниже, в зависимости от количества примесей, и колебаться в пределах от 100 до 180 единиц.
Медь, при изменении температуры в тех же пределах, будет уменьшать теплопроводность от 393 до 354 Вт/м*град. При этом, медь содержащие сплавы латуни будут иметь такие же свойства, как и алюминиевые, а значение теплопроводности будет изменяться от 100 до 200 единиц, в зависимости от количества цинка и других примесей в составе сплава латуни.
Коэффициент теплопроводности чистого никеля считается низким, он будет менять свое значение от 67 до 57 Вт/м*град. Сплавы с содержанием никеля, будут также иметь коэффициент с пониженным значением, который, благодаря содержанию железа и цинка, колеблется от 20 до 50 Вт/м*град. А наличие хрома, позволит понизить теплопроводность в металлах до 12 единиц, с небольшим увеличением этой величины, при нагреве.
Примеси в медных сплавах
отсюда
Примеси, содержащиеся в меди (и, естественно, взаимодействующие с ней), подразделяют на три группы.
Образующие с медью твердые растворы
К таким примесям относятся алюминий, сурьма, никель, железо, олово, цинк и др. Данные добавки существенно снижают электро- и теплопроводность. К маркам, которые преимущественно используются для производства токопроводящих элементов, относятся М0 и М1. Если в составе медного сплава содержится сурьма, то значительно затрудняется его горячая обработка давлением.
Не растворяющиеся в меди примеси
Сюда относятся свинец, висмут и др. Не влияющие на электропроводность основного металла, такие примеси затрудняют возможность его обработки давлением.
Примеси, образующие с медью хрупкие химические соединения
К этой группе относятся сера и кислород, который снижает электропроводность и прочность основного металла. Наличие серы в медном сплаве значительно облегчает его обрабатываемость при помощи резания.
Применение
Агрегатное состояние материалов имеет отличительную структуру строения молекул и атомов. Именно это оказывает большое влияние на металлические изделия и их свойства, в зависимости от назначения.
Отличающийся химический состав узлов и деталей из железа, позволяет обладать различной теплопроводностью. Это связано со структурой таких металлов как чугун, сталь, медь и алюминий. Пористость чугунных изделий способствует медленному нагреванию, а плотность медной структуры – наоборот, ускоряет процесс теплоотдачи. Эти свойства используют для быстрого отвода тепла или постепенного нагревания продукции инертного назначения. Примером использования свойств металлических изделий является:
- кухонная посуда с различными свойствами;
- оборудование для пайки труб;
- утюги;
- подшипники качения и скольжения;
- сантехническое оборудование для подогрева воды;
- приборы отопления.
Медные трубки широко используют в радиаторах автомобильных систем охлаждения и кондиционеров, применяемых в быту. Чугунные батареи сохраняют тепло в квартире, даже при непостоянной подаче теплоносителя требуемой температуры. А радиаторы из алюминия, способствуют быстрой передаче тепла отапливаемому помещению.
При возникновении высокой температуры, в результате трения металлических поверхностей, также важно учитывать теплопроводность изделия. В любом редукторе или другом механическом оборудовании, способность отводить тепло, позволит деталям механизма сохранить прочность и не быть подвергнутыми разрушению, в процессе эксплуатации. Знание свойств теплопередачи различных материалов, позволит грамотно применить те или иные сплавы из цветных или черных металлов.
Ещё статьи по теме:
Характеристики алюминиевых батарей
Радиаторы из алюминия характеризуются тем, что внешняя их сторона покрыта порошковым слоем, который устойчив к внешним коррозиям, а внутренняя – полимерным защитным покрытием.
Они имеют аккуратный внешний вид, легкие по весу, относятся к средней ценовой категории.
Способ обогрева у алюминиевых радиаторов – конвекционный, выдерживают давление до шестнадцати атмосфер.
Конструктивно этот вид приборов подразделяется на экструдированные и литые. В первом случае процесс производства состоит из двух этапов: сначала пластичный алюминий экструдируют в секции, а верх и низ под давлением отливают, а затем составные части склеивают специальным составом. Во втором случае секция вся сразу отливается под давлением. Этот метод делает конструкцию более прочной, позволяющей более стабильно выдерживать гидроудары, возникающие при опрессовке отопительных систем перед наступлением зимы.
Далее указаны характеристики теплоотдачи алюминиевых радиаторов отопления в таблице.
Теплопроводность латуни и бронзы
В таблице приведены значения теплопроводности латуни, бронзы, а также медно-никелевых сплавов (константана, копели, манганина и др.) в зависимости от температуры — в интервале от 4 до 1273 К.
Теплопроводность латуни, бронзы и других сплавов на основе меди при нагревании увеличивается. По данным таблицы, наибольшей теплопроводностью из рассмотренных сплавов при комнатной температуре обладает латунь Л96. Ее теплопроводность при температуре 300 К (27°С) равна 244 Вт/(м·град).
Также к медным сплавам с высокой теплопроводностью можно отнести: латунь ЛС59-1, томпак Л96 и Л90, томпак оловянистый ЛТО90-1, томпак прокатный РТ-90. Кроме того, теплопроводность латуни в основном выше теплопроводности бронзы. Следует отметить, что к бронзам с высокой теплопроводностью относятся: фосфористая, хромистая и бериллиевая бронзы, а также бронза БрА5.
Медным сплавом с наименьшей теплопроводностью является марганцовистая бронза — ее коэффициент теплопроводности при температуре 27°С равен 9,6 Вт/(м·град).
Теплопроводность медных сплавов всегда ниже теплопроводности чистой меди при прочих равных условиях. Кроме того, теплопроводность медно-никелевых сплавов имеет особенно низкое значение. Самым теплопроводным из них при комнатной температуре является мельхиор МНЖМц 30-0,8-1 с теплопроводностью 30 Вт/(м·град).
Таблица теплопроводности латуни, бронзы и медно-никелевых сплавов
Сплав | Температура, К | Теплопроводность, Вт/(м·град) |
Медно-никелевые сплавы | ||
Бериллиевая медь | 300 | 111 |
Константан зарубежного производства | 4…10…20…40…80…300 | 0,8…3,5…8,8…13…18…23 |
Константан МНМц40-1,5 | 273…473…573…673 | 21…26…31…37 |
Копель МНМц43-0,5 | 473…1273 | 25…58 |
Манганин зарубежного производства | 4…10…40…80…150…300 | 0,5…2…7…13…16…22 |
Манганин МНМц 3-12 | 273…573 | 22…36 |
Мельхиор МНЖМц 30-0,8-1 | 300 | 30 |
Нейзильбер | 300…400…500…600…700 | 23…31…39…45…49 |
Латунь | ||
Автоматная латунь UNS C36000 | 300 | 115 |
Л62 | 300…600…900 | 110…160…200 |
Л68 латунь деформированная | 80…150…300…900 | 71…84…110…120 |
Л80 полутомпак | 300…600…900 | 110…120…140 |
Л90 | 273…373…473…573…673…773…873 | 114…126…142…157…175…188…203 |
Л96 томпак волоченый | 300…400…500…600…700…800 | 244…245…246…250…255…260 |
ЛАН59-3-2 латунь алюминиево-никелевая | 300…600…900 | 84…120…150 |
ЛМЦ58-2 латунь марганцовистая | 300…600…900 | 70…100…120 |
ЛО62-1 оловянистая | 300 | 99 |
ЛО70-1 оловянистая | 300…600 | 92…140 |
ЛС59-1 латунь отожженая | 4…10…20…40…80…300 | 3,4…10…19…34…54…120 |
ЛС59-1В латунь свинцовистая | 300…600…900 | 110…140…180 |
ЛТО90-1 томпак оловянистый | 300…400…500…600…700…800…900 | 124…141…157…174…194…209…222 |
Бронза | ||
БрА5 | 300…400…500…600…700…800…900 | 105…114…124…133…141…148…153 |
БрА7 | 300…400…500…600…700…800…900 | 97…105…114…122…129…135…141 |
БрАЖМЦ10-3-1,5 | 300…600…800 | 59…77…84 |
БрАЖН10-4-4 | 300…400…500 | 75…87…97 |
БрАЖН11-6-6 | 300…400…500…600…700…800 | 64…71…77…82…87…94 |
БрБ2, отожженая при 573К | 4…10…20…40…80 | 2,3…5…11…21…37 |
БрКд | 293 | 340 |
БрКМЦ3-1 | 300…400…500…600…700 | 42…50…55…54…54 |
БрМЦ-5 | 300…400…500…600…700 | 94…103…112…122…127 |
БрМЦС8-20 | 300…400…500…600…700…800…900 | 32…37…43…46…49…51…53 |
БрО10 | 300…400…500 | 48…52…56 |
БрОС10-10 | 300…400…600…800 | 45…51…61…67 |
БрОС5-25 | 300…400…500…600…700…800…900 | 58…64…71…77…80…83…85 |
БрОФ10-1 | 300…400…500…600…700…800…900 | 34…38…43…46…49…51…52 |
БрОЦ10-2 | 300…400…500…600…700…800…900 | 55…56…63…68…72…75…77 |
БрОЦ4-3 | 300…400…500…600…700…800…900 | 84…93…101…108…114…120…124 |
БрОЦ6-6-3 | 300…400…500…600…700…800…900 | 64…71…77…82…87…91…93 |
БрОЦ8-4 | 300…400…500…600…700…800…900 | 68…77…83…88…93…96…100 |
Бронза алюминиевая | 300 | 56 |
Бронза бериллиевая состаренная | 20…80…150…300 | 18…65…110…170 |
Бронза марганцовистая | 300 | 9,6 |
Бронза свинцовистая производственная | 300 | 26 |
Бронза фосфористая 10% | 300 | 50 |
Бронза фосфористая отожженая | 20…80…150…300 | 6…20…77…190 |
Бронза хромистая UNS C18200 | 300 | 171 |
Примечание: Температура в таблице дана в градусах Кельвина!
Приложение А (обязательное)
Таблица А.1
Материалы (конструкции) | Эксплуатационная влажность материалов w, % по массе, при условиях эксплуатации | |
А | Б | |
1 Пенополистирол | 2 | 10 |
2 Пенополистирол экструзионный | 2 | 3 |
3 Пенополиуретан | 2 | 5 |
4 Плиты из резольно-фенолформальдегидного пенопласта | 5 | 20 |
5 Перлитопластбетон | 2 | 3 |
6 Теплоизоляционные изделия из вспененного синтетического каучука «Аэрофлекс» | 5 | 15 |
7 Теплоизоляционные изделия из вспененного синтетического каучука «Кфлекс» | ||
8 Маты и плиты из минеральной ваты (на основе каменного волокна и штапельного стекловолокна) | 2 | 5 |
9 Пеностекло или газостекло | 1 | 2 |
10 Плиты древесно-волокнистые и древесно-стружечные | 10 | 12 |
11 Плиты фибролитовые и арболит на портландцементе | 10 | 15 |
12 Плиты камышитовые | 10 | 15 |
13 Плиты торфяные теплоизоляционные | 15 | 20 |
14 Пакля | 7 | 12 |
15 Плиты на основе гипса | 4 | 6 |
16 Листы гипсовые обшивочные (сухая штукатурка) | 4 | 6 |
17 Изделия из вспученного перлита на битумном связующем | 1 | 2 |
18 Гравий керамзитовый | 2 | 3 |
19 Гравий шунгизитовый | 2 | 4 |
20 Щебень из доменного шлака | 2 | 3 |
21 Щебень шлакопемзовый и аглопоритовый | 2 | 3 |
22 Щебень и песок из вспученного перлита | 5 | 10 |
23 Вермикулит вспученный | 1 | 3 |
24 Песок для строительных работ | 1 | 2 |
25 Цементно-шлаковый раствор | 2 | 4 |
26 Цементно-перлитовый раствор | 7 | 12 |
27 Гипсоперлитовый раствор | 10 | 15 |
28 Поризованный гипсоперлитовый раствор | 6 | 10 |
29 Туфобетон | 7 | 10 |
30 Пемзобетон | 4 | 6 |
31 Бетон на вулканическом шлаке | 7 | 10 |
32 Керамзитобетон на керамзитовом песке и керамзитопенобетон | 5 | 10 |
33 Керамзитобетон на кварцевом песке с поризацией | 4 | 8 |
34 Керамзитобетон на перлитовом песке | 9 | 13 |
35 Шунгизитобетон | 4 | 7 |
36 Перлитобетон | 10 | 15 |
37 Шлакопемзобетон (термозитобетон) | 5 | 8 |
38 Шлакопемзопено- и шлакопемзогазобетон | 8 | 11 |
39 Бетон на доменных гранулированных шлаках | 5 | 8 |
40 Аглопоритобетон и бетон на топливных (котельных) шлаках | 5 | 8 |
41 Бетон на зольном гравии | 5 | 8 |
42 Вермикулитобетон | 8 | 13 |
43 Полистиролбетон | 4 | 8 |
44 Газо- и пенобетон, газо- и пеносиликат | 8 | 12 |
45 Газо- и пенозолобетон | 15 | 22 |
46 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-песчаном растворе | 1 | 2 |
47 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-шлаковом растворе | 1,5 | 3 |
48 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-перлитовом растворе | 2 | 4 |
49 Кирпичная кладка из сплошного кирпича силикатного на цементно-песчаном растворе | 2 | 4 |
50 Кирпичная кладка из сплошного кирпича трепельного на цементно-песчаном растворе | 2 | 4 |
51 Кирпичная кладка из сплошного кирпича шлакового на цементно-песчаном растворе | 1,5 | 3 |
52 Кирпичная кладка из керамического пустотного кирпича плотностью 1400 кг м3 (брутто) на цементно-песчаном растворе | 1 | 2 |
53 Кирпичная кладка из пустотного кирпича силикатного на цементно-песчаном растворе | 2 | 4 |
54 Древесина | 15 | 20 |
55 Фанера клееная | 10 | 13 |
56 Картон облицовочный | 5 | 10 |
57 Картон строительный многослойный | 6 | 12 |
58 Железобетон | 2 | 3 |
59 Бетон на гравии или щебне из природного камня | 2 | 3 |
60 Раствор цементно-песчаный | 2 | 4 |
61 Раствор сложный (песок, известь, цемент) | 2 | 4 |
62 Раствор известково-песчаный | 2 | 4 |
63 Гранит, гнейс и базальт | ||
64 Мрамор | ||
65 Известняк | 2 | 3 |
66 Туф | 3 | 5 |
67 Листы асбестоцементные плоские | 2 | 3 |
Ключевые слова: строительные материалы и изделия, теплофизические характеристики, расчетные значения, теплопроводность, паропроницаемость
От чего зависит показатель теплопроводности
Теплопроводность – это физическая величина и по большей части зависит от параметров температуры, давления и типа вещества. Большая часть коэффициентов определяется опытным путем. Для этого разработано множество методов. Результаты сводятся в справочные таблицы, которые потом используются при проведении различных научных и инженерных расчетов. Тела обладают разной температурой и при тепловом обмене она (температура) будет распределяться неравномерно. Другими словами необходимо знать, как зависит коэффициент теплопроводности от температуры.
Многочисленные опыты показывают то, что у многих материалов связь между коэффициентом и самой теплопроводностью является линейной.
Коэффициент теплопроводности
Теплопроводность металлов обусловлена формой его кристаллической решетки.
Во многом коэффициент теплопроводности зависит от строения материала, размеров его пор и влажности.
Когда учитывается коэффициент теплопроводности
Параметры теплопроводности в обязательном порядке учитывают во время выбора материалов для ограждающих конструкций – стен, перекрытий и пр. В помещениях, где стены выполнены из материалов с высокой теплопроводностью в холодное время года будет довольно прохладно. Не поможет и отделка помещения. Для того, чтобы этого избежать стены необходимо делать довольно толстыми. Это непременно повлечет повышение затрат на материалы и оплату труда.
Схема утепления деревянного дома
Именно поэтому в конструкции стен предусмотрено использование материалов с низкой теплопроводностью (минеральная вата, пенопласт и пр.).
Показатели для стали
- В справочных материалах по теплопроводности различных материалов особое место занимают данные, представленные о сталях разных марок. Так, в справочных материалах собраны экспериментальные и расчетные данные следующих типов стальных сплавов: стойких к воздействию коррозии, повышенной температуры;
- предназначенных для производства пружин, режущего инструмента;
- насыщенных легирующими добавками.
В таблицах сведены показатели, которые были собраны для сталей в температурном диапазоне от -263 до 1200 градусов. Усредненные показатели составляют для:
- углеродистых сталей 50 – 90 Вт/(м×град);
- коррозионностойких, жаро- и теплостойких сплавов, относящимся к мартенситным — от 30 до 45 Вт/(м×град);
- сплавов, относящимся к аустенитным от 12 до 22 Вт/(м×град).
В этих справочных материалах размещена информация и свойствах чугунов.
Коэффициенты теплопроводности алюминиевых, медных и никелевых сплавов
Во время проведения расчетов связанных с цветными металлами и сплавами проектировщики применяют справочные материалы, размещенные в специальных таблицах.
Таблица теплопроводности алюминиевых сплавов
В них представлены материалы о теплопроводности цветных металлов и сплавов, кроме этих данных указана информация о химическом составе сплавов. Исследования проводили при температурах от 0 до 600 °С.
По информации собранной в этих табличных материалах видно то, что к цветным металлам, обладающим высокой теплопроводностью сплавы на основе магния и никель. К металлам, у которых низкая теплопроводность относят нихром, инвар и некоторые другие.
У большинства металлов хорошая теплопроводность, у одних она больше, у других меньше. К металлам с хорошей теплопроводностью относят золото, медь и некоторые другие. К материалам с низкой теплопроводностью относят олово, алюминий и пр.
Таблица теплопроводности сплавов никеля
Высокая теплопроводность может быть и достоинством, и недостатком. Все зависит от сферы применения. К, примеру, высокая теплопроводность хороша для кухонной посуды. Материалы с низкой теплопроводностью применяют для создания неразъемных соединений металлических деталей. Существуют целые семейства сплавов, выполненных на основе олова.
Теплопроводность цветных металлов, теплоемкость и плотность сплавов
В таблице представлены значения теплопроводности металлов (цветных), а также химический состав металлов и технических сплавов в интервале температуры от 0 до 600°С.
Цветные металлы и сплавы: никель Ni, монель, нихром; сплавы никеля (по ГОСТ 492-58): мельхиор НМ81, НМ70, константан НММц 58,5-1,54, копель НМ 56,5, монель НМЖМц и К-монель, алюмель, хромель, манганин НММц 85-12, инвар; магниевые сплавы (по ГОСТ 2856-68), электрон, платинородий; мягкие припои (по ГОСТ 1499-70): олово чистое, свинец, ПОС-90, ПОС-40, ПОС-30, сплав Розе, сплав Вуда.
По данным таблицы видно, что высокую теплопроводность (при комнатной температуре) имеют магниевые сплавы и никель. Низкая же теплопроводность свойственна нихрому, инвару и сплаву Вуда.
Коэффициенты теплопроводности алюминиевых, медных и никелевых сплавов
Теплопроводность металлов, алюминиевых, медных и никелевых сплавов в таблице дана в интервале температуры от 0 до 600°С в размерности Вт/(м·град).Металлы и сплавы: алюминий, алюминиевые сплавы, дюралюминий, латунь, медь, монель, нейзильбер, нихром, нихром железистый, сталь мягкая. Алюминиевые сплавы имеют большую теплопроводность, чем латунь и сплавы никеля.
Коэффициенты теплопроводности сплавов
В таблице даны значения теплопроводности сплавов в интервале температуры от 20 до 200ºС.Сплавы: алюминиевая бронза, бронза, бронза фосфористая, инвар, константан, манганин, магниевые сплавы, медные сплавы, сплав Розе, сплав Вуда, никелевые сплавы, никелевое серебро, платиноиридий, сплав электрон, платинородий.
В таблице указаны значения удельного электрического сопротивления и КТР металлической проволоки, выполненной из различных металлов и сплавов.
Материал проволоки: алюминий, вольфрам, железо, золото, латунь, манганин, медь, никель, константан, нихром, олово, платина, свинец, серебро, цинк.
Как видно из таблицы, нихромовая проволока имеет высокое удельное электрическое сопротивление и успешно применяется в качестве спиралей накаливания нагревательных элементов множества бытовых и промышленных устройств.
Удельная теплоемкость цветных сплавов
В таблице приведены величины удельной (массовой) теплоемкости двухкомпонентных и многокомпонентных цветных сплавов, не содержащих железа, при температуре от 123 до 1000К. Теплоемкость указана в размерности кДж/(кг·град).
Дана теплоемкость следующих сплавов: сплавы, содержащие алюминий, медь, магний, ванадий, цинк, висмут, золото, свинец, олово, кадмий, никель, иридий, платина, калий, натрий, марганец, титан, сплав висмут — свинец — олово, сплав висмут-свинец, висмут — свинец — кадмий, алюмель, сплав липовица, нихром, сплав розе.
Также существует отдельная таблица, где представлена удельная теплоемкость металлов при различных температурах.
Удельная теплоемкость многокомпонентных специальных сплавов
Удельная (массовая) теплоемкость многокомпонентных специальных сплавов приведена в таблице при температуре от 0 до 1300ºС. Размерность теплоемкости кал/(г·град).Теплоемкость специальных сплавов: алюмель, белл-металл, сплав Вуда, инвар, липовица сплав, манганин, монель, сплав Розе, фосфористая бронза, хромель, сплав Na-K, сплав Pb — Bi, Pb — Bi — Sn, Zn — Sn — Ni — Fe — Mn.
Плотность сплавов
Представлена таблица значений плотности сплавов при комнатной температуре. Приведены следующие сплавы: бронза, оловянистая, фосфористая, дюралюминий, инвар, константан, латунь, магналиум, манганин, монель — металл, платино — иридиевый сплав, сплав Вуда, сталь катаная, литая.
ПРИМЕЧАНИЕ: Будьте внимательны! Плотность сплавов в таблице указана в степени 10-3. Не забудьте умножить на 1000! Например, плотность катанной стали изменяется в пределах от 7850 до 8000 кг/м3.
- Михеев М.А., Михеева И.М. Основы теплопередачи.
- Физические величины. Справочник. А.П. Бабичев, Н.А. Бабушкина, А.М. Братковский и др.; Под ред. И.С. Григорьева, Е.З. Мейлихова. — М.: Энергоатомиздат, 1991. — 1232 с.
- Таблицы физических величин. Справочник. Под ред. акад. И.К. Кикоина. М.: Атомиздат, 1976. — 1008 с.
- Шелудяк Ю.Е., Кашпоров Л.Я. и др. Теплофизические свойства компонентов горючих систем. М. 1992. — 184 с.
- Промышленные печи. Справочное руководство для расчетов и проектирования. 2–е издание, дополненное и переработанное, Казанцев Е.И. М.: «Металлургия», 1975.- 368 с.
Температура плавления латуни
Температура плавления латуни рассмотренных марок изменяется в интервале от 865 до 1055 °С. Наиболее легкоплавкой является марганцовистая латунь ЛМц58-2 с температурой плавления 865°С. Также к легкоплавким латуням можно отнести: Л59, Л62, ЛАН59-3-2, ЛКС65-1,5-3 и другие.
Наибольшую температуру плавления имеет латунь Л96 (1055°С). Среди тугоплавких латуней по данным таблицы можно также выделить: латунь Л90, ЛА85-0,5, томпак оловянистый ЛТО90-1.
Температура плавления латуни
Латунь | t, °С | Латунь | t, °С |
Л59 | 885 | ЛМц55-3-1 | 930 |
Л62 | 898 | ЛМц58-2 латунь марганцовистая | 865 |
Л63 | 900 | ЛМцА57-3-1 | 920 |
Л66 | 905 | ЛМцЖ52-4-1 | 940 |
Л68 латунь деформированная | 909 | ЛМцОС58-2-2-2 | 900 |
Л70 | 915 | ЛМцС58-2-2 | 900 |
Л75 | 980 | ЛН56-3 | 890 |
Л80 полутомпак | 965 | ЛН65-5 | 960 |
Л85 | 990 | ЛО59-1 | 885 |
Л90 | 1025 | ЛО60-1 | 885 |
Л96 томпак волоченый | 1055 | ЛО62-1 оловянистая | 885 |
ЛА67-2,5 | 995 | ЛО65-1-2 | 920 |
ЛА77-2 | 930 | ЛО70-1 оловянистая | 890 |
ЛА85-0,5 | 1020 | ЛО74-3 | 885 |
ЛАЖ60-1-1 | 904 | ЛО90-1 | 995 |
ЛАЖМц66-6-3-2 | 899 | ЛС59-1 | 900 |
ЛАН59-3-2 латунь алюминиево-никелевая | 892 | ЛС59-1В латунь свинцовистая | 900 |
ЛАНКМц75-2-2,5-0,5-0,5 | 940 | ЛС60-1 | 900 |
ЛЖМц59-1-1 | 885 | ЛС63-3 | 885 |
ЛК80-3 | 900 | ЛС64-2 | 910 |
ЛКС65-1,5-3 | 870 | ЛС74-3 | 965 |
ЛКС80-3-3 | 900 | ЛТО90-1 томпак оловянистый | 1015 |
Температура плавления бронзы
Температура плавления бронзы находится в диапазоне от 854 до 1135°С. Наибольшей температурой плавления обладает бронза АЖН11-6-6 — она плавится при температуре 1408 К (1135°С). Температура плавления этой бронзы даже выше, чем температура плавления меди, которая составляет 1084,6°С.
К бронзам с невысокой температурой плавления можно отнести: БрОЦ8-4, БрБ2, БрМЦС8-20, БрСН60-2,5 и подобные.
Температура плавления бронзы
Бронза | t, °С | Бронза | t, °С |
БрА5 | 1056 | БрОС8-12 | 940 |
БрА7 | 1040 | БрОСН10-2-3 | 1000 |
БрА10 | 1040 | БрОФ10-1 | 934 |
БрАЖ9-4 | 1040 | БрОФ4-0.25 | 1060 |
БрАЖМЦ10-3-1,5 | 1045 | БрОЦ10-2 | 1015 |
БрАЖН10-4-4 | 1084 | БрОЦ4-3 | 1045 |
БрАЖН11-6-6 | 1135 | БрОЦ6-6-3 | 967 |
БрАЖС7-1,5-1,5 | 1020 | БрОЦ8-4 | 854 |
БрАМЦ9-2 | 1060 | БрОЦС3,5-6-5 | 980 |
БрБ2 | 864 | БрОЦС4-4-17 | 920 |
БрБ2,5 | 930 | БрОЦС4-4-2,5 | 887 |
БрКМЦ3-1 | 970 | БрОЦС5-5-5 | 955 |
БрКН1-3 | 1050 | БрОЦС8-4-3 | 1015 |
БрКС3-4 | 1020 | БрОЦС3-12-5 | 1000 |
БрКЦ4-4 | 1000 | БрОЦСН3-7-5-1 | 990 |
БрМГ0,3 | 1076 | БрС30 | 975 |
БрМЦ5 | 1007 | БрСН60-2,5 | 885 |
БрМЦС8-20 | 885 | БрСУН7-2 | 950 |
БрО10 | 1020 | БрХ0,5 | 1073 |
БрОС10-10 | 925 | БрЦр0,4 | 965 |
БрОС10-5 | 980 | Кадмиевая | 1040 |
БрОС12-7 | 930 | Серебряная | 1082 |
БрОС5-25 | 899 | Сплав ХОТ | 1075 |
Примечание: температура плавления и кипения других распространенных металлов приведена в этой таблице.
- Физические величины. Справочник. Под ред. И.С. Григорьева, Е.З. Мейлихова. — М.: Энергоатомиздат, 1991. — 1232 с.
- Чиркин В.С. Теплофизические свойства материалов ядерной техники. М.: Атомиздат, 1967 — 474 с.
Удельная теплоёмкость
удельная теплоёмкость, удельная теплоёмкость 8 классУде́льная теплоёмкость
— отношение теплоёмкости к массе, теплоёмкость единичной массы вещества (разная для различных веществ); физическая величина, численно равная количеству теплоты, которое необходимо передать единичной массе данного вещества для того, чтобы его температура изменилась на единицу.
В Международной системе единиц (СИ) удельная теплоёмкость измеряется в джоулях на килограмм на кельвин, Дж/(кг·К). Иногда используются и внесистемные единицы: калория/(кг·К) и т.д.
Удельная теплоёмкость обычно обозначается буквами c или С, часто с индексами.
На значение удельной теплоёмкости влияет температура вещества и другие термодинамические параметры. К примеру, измерение удельной теплоёмкости воды даст разные результаты при 20 °C и 60 °C.
Кроме того, удельная теплоёмкость зависит от того, каким образом позволено изменяться термодинамическим параметрам вещества (давлению, объёму и т. д.
); например, удельная теплоёмкость при постоянном давлении (CP) и при постоянном объёме (CV), вообще говоря, различны.
Формула расчёта удельной теплоёмкости: где c — удельная теплоёмкость, Q — количество теплоты, полученное веществом при нагреве (или выделившееся при охлаждении), m — масса нагреваемого (охлаждающегося) вещества, ΔT — разность конечной и начальной температур вещества. Удельная теплоёмкость может зависеть (и в принципе, строго говоря, всегда – более или менее сильно – зависит) от температуры, поэтому более корректной является следующая формула с малыми (формально бесконечно малыми) и :
- 1 Значения удельной теплоёмкости некоторых веществ
- 2 См. также
- 3 Примечания
- 4 Литература
- 5 Ссылки
Значения удельной теплоёмкости некоторых веществ
воздух (сухой) | газ | 1,005 |
воздух (100 % влажность) | газ | 1,0301 |
алюминий | твёрдое тело | 0,903 |
бериллий | твёрдое тело | 1,8245 |
латунь | твёрдое тело | 0,377 |
олово | твёрдое тело | 0,218 |
медь | твёрдое тело | 0,385 |
молибден | твёрдое тело | 0,250 |
сталь | твёрдое тело | 0,462 |
алмаз | твёрдое тело | 0,502 |
этанол | жидкость | 2,460 |
золото | твёрдое тело | 0,129 |
графит | твёрдое тело | 0,720 |
гелий | газ | 5,190 |
водород | газ | 14,300 |
железо | твёрдое тело | 0,444 |
свинец | твёрдое тело | 0,130 |
чугун | твёрдое тело | 0,540 |
вольфрам | твёрдое тело | 0,134 |
литий | твёрдое тело | 3,582 |
ртуть | жидкость | 0,139 |
азот | газ | 1,042 |
нефтяные масла | жидкость | 1,67 — 2,01 |
кислород | газ | 0,920 |
кварцевое стекло | твёрдое тело | 0,703 |
вода 373 К (100 °C) | газ | 2,020 |
вода | жидкость | 4,187 |
лёд | твёрдое тело | 2,060 |
сусло пивное | жидкость | 3,927 |
асфальт | 0,92 |
полнотелый кирпич | 0,84 |
силикатный кирпич | 1,00 |
бетон | 0,88 |
кронглас (стекло) | 0,67 |
флинт (стекло) | 0,503 |
оконное стекло | 0,84 |
гранит | 0,790 |
талькохлорит | 0,98 |
гипс | 1,09 |
мрамор, слюда | 0,880 |
песок | 0,835 |
сталь | 0,47 |
почва | 0,80 |
древесина | 1,7 |
См. также
- Теплоёмкость
- Объёмная теплоёмкость
- Молярная теплоёмкость
- Скрытая теплота
- Теплоёмкость идеального газа
- Удельная теплота парообразования и конденсации
- Удельная теплота плавления
Примечания
- ↑
Для неоднородного (по химическому составу) образца удельная теплоемкость является дифференциальной характеристикой , меняющейся от точки к точке.Зависит она в принципе и от температуры (хотя во многих случаях изменяется достаточно слабо при достаточно больших изменениях температуры), при этом строго говоря определяется – вслед за теплоёмкостью – как дифференциальная величина и по температурной оси, т.е.
строго говоря следует рассматривать изменение температуры в определении удельной теплоёмкости не на один градус (тем более не на какую-то более крупную единицу температуры), а на малое с соответствующим количеством переданной теплоты . (См. далее основной текст).
- ↑
Кельвины (К) здесь можно заменять на градусы Цельсия (°C), поскольку эти температурные шкалы (абсолютная и шкала Цельсия) отличаются друг от друга лишь начальной точкой, но не величиной единицы измерения.
Ссылки
- Таблицы физических величин. Справочник, под ред. И. К. Кикоина, М., 1976.
- Сивухин Д. В. Общий курс физики. — Т. II. Термодинамика и молекулярная физика.
- E. М. Лифшиц Теплоёмкость // под. ред. А. М. Прохорова Физическая энциклопедия. — М.: «Советская энциклопедия», 1998. — Т. 2.
Методы изучения параметров теплопроводности
При проведении изучения параметров теплопроводности надо помнить о том, что характеристики конкретного металла или его сплавов от метода его выработки. Например, параметры металла полученного с помощью литья могут существенно отличаться от характеристик материала изготовленного по методам порошковой металлургии. Свойства сырого металла коренным образом отличаются от того, который прошел через термическую обработку.
Термическая нестабильность, то есть преобразование отдельных свойств металла после воздействия высоких температур является общим для практически всех материалов. Как пример можно привести то, что металлы после длительного воздействия разных температур способны достичь разных уровней рекристаллизации, а это отражается на параметрах теплопроводности.
Структура стали после термической обработки
Можно сказать следующее – при проведении исследований параметров теплопроводности необходимо использовать образцы металлов и их сплавов в стандартном и определенном технологическом состоянии, например, после термической обработки.
Например, существуют требования по измельчению металла для проведения его исследований с применением способов термического анализа. Действительно, такое требование существует при проведении ряда исследований. Бывает и такое требование – как изготовление специальных пластин и многие другие.
Нетермостабильность металлов ставит ряд ограничений использование теплофизических способов исследования. Дело в том, что этот способ проведения исследований требует нагревать образцы не менее двух раз, в определенном температурном интервале.
Один из методов называют релакционно-динамическим. Он предназначен для выполнения массовых измерений теплоемкости у металлов. В этом методе фиксируется переходная кривая температуры образца между его двумя стационарными состояниями. Этот процесс является следствием скачка тепловой мощности вводимой в испытуемый образец.
Такой метод можно назвать относительным. В нем используются испытуемый и сравнительный образцы. Главное заключается в том, что бы у образцов была одинаковая излучающая поверхность. При проведении исследований температура, воздействующая на образцы должна изменяться ступенчато, при этом по достижении заданных параметров необходимо выдержать определенное количество времени. Направление изменения температуры и ее шаг должен быть подобран таким образом, что бы образец, предназначенный для испытаний, прогревался равномерно.
В эти моменты тепловые потоки сравняются и отношение теплопередачи будет определяться как разность скоростей колебаний температуры. Иногда в процессе этих исследований источник косвенного подогрева исследуемого и сравнительного образца. На один из образцов могут быть созданы дополнительные тепловые нагрузки в сравнении со вторым образцом.
Факторы, влияющие на величину теплопроводности
Теплопроводность материалов, используемых в строительстве, зависит от их параметров:
В начале измерения принимается начальное стационарное состояние температуры. Измерительный датчик и образец образуют две полубесконечные области. Линейная часть кривой параметризуется используемой емкостью плоского источника и теплоизоляционными свойствами обоих смежных полупространств.
В общем случае расчет значения теплопроводности может быть выражен уравнением. Во время практических измерений результаты измерений на эталонных материалах были применены для выбора оптимального интервала измерения и оптимальной выходной мощности источника тепла в отношении максимизации результатов измерений точно и воспроизводимости.
- Пористость – наличие пор в структуре материала нарушает его однородность. При прохождении теплового потока часть энергии передается через объем, занятый порами и заполненный воздухом. Принято за отсчетную точку принимать теплопроводность сухого воздуха (0,02 Вт/(м*°С)). Соответственно, чем больший объем будет занят воздушными порами, тем меньше будет теплопроводность материала.
- Структура пор – малый размер пор и их замкнутый характер способствуют снижению скорости теплового потока. В случае использования материалов с крупными сообщающимися порами в дополнение к теплопроводности в процессе переноса тепла будут участвовать процессы передачи тепла конвекцией.
- Плотность – при больших значениях частицы более тесно взаимодействуют друг с другом и в большей степени способствуют передаче тепловой энергии. В общем случае значения теплопроводности материала в зависимости от его плотности определяются либо на основе справочных данных, либо эмпирически.
- Влажность – значение теплопроводности для воды составляет (0,6 Вт/(м*°С)). При намокании стеновых конструкций или утеплителя происходит вытеснение сухого воздуха из пор и замещение его каплями жидкости или насыщенным влажным воздухом. Теплопроводность в этом случае значительно увеличится.
- Влияние температуры на теплопроводность материала отражается через формулу:
λ=λо*(1+b*t), (1)
Определение коэффициента теплопроводности строительных материалов с использованием нестационарного плоского измерительного оборудования. Нестационарное плоское измерительное оборудование благодаря своей конструкции обладает многими выгодными свойствами. В этом аппарате можно легко и быстро измерить значение коэффициента теплопроводности в случае любого строительного материала.
Само измерение длится всего несколько секунд, и поэтому можно определить значение коэффициента теплопроводности в зависимости от влажности испытуемого образца. Плоский датчик обеспечивает возможность определения коэффициента теплопроводности значительно неоднородных материалов. Требования, касающиеся размера выборки, по сравнению с другими методами существенно меньше. По этим причинам можно определить коэффициент теплопроводности даже в части строительных изделий, поскольку со стандартными образцами тепловые технические свойства могут сильно отличаться от свойств конечных продуктов. Точность измерения. Как и в случае любого метода измерения, даже в случае нестационарного плоского измерительного прибора наибольшая ошибка исходит из тестового образца. Если поверхность испытываемого образца неравномерна.
- Скорость измерения.
- В отличие от классических методов этот метод несравненно быстрее.
- Гибкость измерений.
Измерительное устройство может благодаря своим благоприятным свойствам применяться для определения измерения коэффициента теплопроводности в большом разнообразии материалов и изделий, например.
где, λо – коэффициент теплопроводности при температуре 0 °С, Вт/м*°С;
b – справочная величина температурного коэффициента;
t – температура.
Какой метод измерения теплопроводности лучше всего подходит для вашего материала?
Существуют методы измерения тепловодности, такие как LFA, GHP, HFM и TCT. Они отличаются друг от друга размерами и геометрическими параметрами образцов, применяемых для проверки теплопроводности металлов.
Эти сокращения можно расшифровать как:
- GHP (метод горячей охранной зоны);
- HFM (метод теплового потока);
- TCT (метод горячей проволоки).
Вышеуказанные способы применяют для определения коэффициентов различных металлов и их сплавов. Вместе с тем с использованием этих методов, занимаются исследованием других материалов, например, минералокерамики или огнеупорных материалов.
Образцы металлов, на которых проводят исследования, имеют габаритные размеры 12,7×12,7×2.
Немного о теплопроводности
Под теплопроводностью в физике понимают перемещение энергии в объекте от более нагретых мельчайших частиц к менее нагретым. Благодаря этому процессу выравнивается температура рассматриваемого предмета в целом. Величина способности проводить тепло характеризуется коэффициентом теплопроводности. Данный параметр равен количеству тепла, которое пропускает через себя материал толщиной 1 метр через площадь поверхности 1 м2 в течение одной секунды при единичной разнице температур.
Материал | Коэффициент теплопроводности, Вт/(м*К) |
Серебро | 428 |
Медь | 394 |
Алюминий | 220 |
Железо | 74 |
Сталь | 45 |
Свинец | 35 |
Кирпич | 0,77 |
Медь обладает коэффициентом теплопроводности 394 Вт/(м*К) при температуре от 20 до 100 °С. Соперничать с ней может только серебро. А у стали и железа этот показатель ниже в 9 и 6 раз соответственно (см. таблицу). Стоит отметить, что теплопроводность изделий, изготовленных из меди, в значительной мере зависит от примесей (впрочем, это касается и других металлов). Например, скорость проводимости тепла снижается, если в медь попадают такие вещества, как:
- железо;
- мышьяк;
- кислород;
- селен;
- алюминий;
- сурьма;
- фосфор;
- сера.
Медная проволока
Если добавить к меди цинк, то получится латунь, у которой коэффициент теплопроводности намного ниже. В то же время добавление других веществ в медь позволяет существенно снизить стоимость готовых изделий и придать им такие характеристики, как прочность и износостойкость. К примеру, для латуни характерны более высокие технологические, механические и антифрикционные свойства.
Поскольку для высокой теплопроводности характерно быстрым распространение энергии нагрева по всему предмету, медь получила широкое применение в системах теплообмена. На данный момент из нее изготавливают радиаторы и трубки для холодильников, вакуумных установок и автомашин для быстрого отвода тепла. Также медные элементы применяют в отопительных установках, но уже для обогрева.
Медный радиатор отопления
Чтобы поддерживать теплопроводность металла на высоком уровне (а значит, делать работу устройств из меди максимально эффективной), во всех системах теплообмена используют принудительный обдув вентиляторами. Такое решение вызвано тем, что при повышении температуры среды теплопроводность любого материала существенно понижается, ведь теплоотдача замедляется.
Структура и состав
Никель имеет белый цвет с серебристым оттенком. Этот металл часто сочетается с другими материалами. В результате образуются сплавы.
- Никель содержится в пище, земной коре, воде и даже в воздухе.
- Никель имеет гранецентрированную кубическую решетку (а = 3,5236А). В обычном состоянии он представлен в форме β-модификации. При катодном распылении переходит в α-модификацию с гексагональной решеткой. Если далее нагреть никель до 200°C, то его решетка станет кубической.
- У никеля недостроенная 3d-электронной оболочка, поэтому его относят к переходным металлам.
- Элемент никель входит в состав самых важных магнитных сплавов и материалов, у которых коэффициент теплового расширения минимален.
Никель, не переработанный и добытый в природе, состоит из 5 стабильных изотопов. В периодической системе Менделеева за никелем числится номер 28. Этот элемент имеет атомную массу равную 58,70.
Далее мы погорим про магнитные, технологические свойства никеля, его механические,физические и технические характеристики.
Теплопроводность алюминия и меди – какой металл лучше?
Теплопроводность алюминия и меди различна – у первого она меньше, чем у второго, в 1,5 раза. У алюминия этот параметр составляет 202–236 Вт/(м*К) и является достаточно высоким по сравнению с другими металлами, но ниже, чем у золота, меди, серебра. Область применения алюминия и меди, где требуется высокая теплопроводность, зависит от ряда других свойств этих материалов.
Алюминий не уступает меди по антикоррозионным свойствам и превосходит в следующих показателях:
- плотность (удельный вес) алюминия меньше в 3 раза;
- стоимость – ниже в 3,5 раза.
Аналогичное изделие, но выполненное из алюминия, значительно легче, чем из меди. Так как по весу металла требуется меньше в 3 раза, а цена его ниже в 3,5 раза, то алюминиевая деталь может быть дешевле примерно в 10 раз. Благодаря этому и высокой теплопроводности алюминий нашел широкое применение при производстве посуды, пищевой фольги для духовок. Так как этот металл мягкий, то в чистом виде не используется – распространены в основном его сплавы (наиболее известный – дюралюминий).
В различных теплообменниках главное – это скорость отдачи избыточной энергии в окружающую среду. Эта задача решается интенсивным обдувом радиатора посредством вентилятора. При этом меньшая теплопроводность алюминия практически не отражается на качестве охлаждения, а оборудование, устройства получаются значительно легче и дешевле (к примеру, компьютерная и бытовая техника). В последнее время в производстве наметилась тенденция к замене в системах кондиционирования медных трубок на алюминиевые.
Медь практически незаменима в радиопромышленности, электронике в качестве токопроводящего материала. Благодаря высокой пластичности из нее можно вытягивать проволоку диаметром до 0,005 мм и делать другие очень тонкие токопроводящие соединения, используемые для электронных приборов. Более высокая, чем у алюминия, проводимость обеспечивает минимальные потери и меньший нагрев радиоэлементов. Теплопроводность позволяет эффективно отводить выделяемое при работе тепло на внешние элементы устройств – корпус, подводящие контакты (к примеру, микросхемы, современные микропроцессоры).
Шаблоны из меди используют при сварке, когда необходимо на стальную деталь сделать наплавку нужной формы. Высока теплопроводность не позволит медному шаблону соединиться с приваренным металлом. Алюминий в таких случаях применять нельзя, так как велика вероятность его расплавления или прожига. Медь также используют при сварке угольной дугой – стержень из этого материала служит неплавящимся катодом.
Недостатки высокой теплопроводности меди и ее сплавов
Медь обладает куда более высокой стоимостью, чем латунь или алюминий. При этом у данного металла есть свои недостатки, напрямую связанные с его достоинствами. Высокая теплопроводность приводит к необходимости создавать специальные условия во время резки, сварки и пайки медных элементов. Так как нагревать медные элементы нужно намного более концентрировано по сравнению со сталью. Также часто требуется предварительный и сопутствующий подогрев детали.
Не стоит забывать и о том, что медные трубы требуют тщательной изоляции в том случае, если из них состоит магистраль или разводка системы отопления. Что приводит к увеличению стоимости монтажа сети в сравнении с вариантами, когда применяются другие материалы.
Пример теплоизоляции медных труб
Сложности возникают и с газовой сваркой меди: для этого процесса потребуются более мощные горелки. При сварке металла толщиной 8–10 мм потребуются две-три горелки. Пока одна горелка используется для сварки, другими ведется подогрев детали. В целом сварочные работы с медью требуют повышенных расходов на расходные материалы.
Следует сказать и о необходимости использования специальных инструментов. Так, для резки латуни и бронзы толщиной до 15 см понадобится резак, способный работать с высокохромистой сталью толщиной в 30 см. Причем этого же инструмента хватит для работы с чистой медью толщиной всего лишь в 5 см.
Плазменная резка меди
Иные критерии подбора утеплителей
Теплоизоляционное покрытие обеспечивает снижение теплопотерь на 30-40 %, повышает прочность несущих конструкций из кирпича и металла, сокращает уровень шума и не забирает полезную площадь постройки. При выборе утеплителя помимо теплопроводности нужно учитывать другие критерии.
Объемный вес
Вес и плотность минваты влияет на качество утепления
Данная характеристика связана с теплопроводностью и зависит от типа материала:
- Минераловатные продукты отличаются плотностью 30-200 кг/м3, поэтому подходят для всех поверхностей строения.
- Вспененный полиэтилен имеет толщину 8-10 мм. Плотность без фольгирования равняется 25 кг/м3 с отражающей основой – около 55 кг/м3.
- Пенопласт отличается удельным весом от 80 до 160 кг/м3, а экструдированный пенополистирол – от 28 до 35 кг/м3. Последний материал является одним из самых легких.
- Полужидкий напыляемый пеноизол при плотности 10 кг/м3 требует предварительного оштукатуривания поверхности.
- Пеностекло имеет плотность, связанную со структурой. Вспененный вариант характеризуется объемным весом от 200 до 400 кг/м3. Теплоизолят из ячеистого стекла – от 100 до 200 м3, что делает возможным применение на фасадных поверхностях.
Способность держать форму
Плиты и пенополиуретан имеют одинаковую степень жесткости, хорошо выдерживают форму
Производители не указывают формостабильность на упаковке, но можно ориентироваться на коэффициенты Пуассона и трения, сопротивления изгибам и сжатиям. По стабильности формы судят о сминаемости или изменении параметров теплоизоляционного слоя. В случае деформации существуют риски утечки тепла на 40 % через щели и мосты холода.
Формостабильность стройматериалов зависит от типа утеплителя:
- Вата (минеральная, базальтовая, эко) при укладке между стропилами расправляется. За счет жестких волокон исключается деформация.
- Пенные виды держат форму на уровне жесткой каменной ваты.
Паропроницаемость
Определяет «дышащие» свойства материала – способность к пропусканию воздуха и пара. Показатель важен для контроля микроклимата в помещении – в законсервированных комнатах образуется больше плесени и грибка. В условиях постоянной влажности конструкция может разрушаться.
По степени паропроницаемости выделяют два типа утеплителей:
- Пены – изделия, для производства которых применяется технология вспенивания. Продукция вообще не пропускает конденсат.
- Ваты – теплоизоляция на основе минерального или органического волокна. Материалы могут пропускать конденсат.
Горючесть
Показатель, на который ориентируются при строительстве наземных частей жилых зданий. Классификация токсичности и горючести указана в ст. 13 ФЗ № 123. В техническом регламенте выделены группы:
- НГ – негорючие: каменная и базальтовая вата.
- Г – возгораемые. Материалы категории Г1 (пенополиуретан) отличаются слабой возгораемостью, категории Г4 (пенополистирол, в т.ч. экструдированный) – сильногорючие.
- В – воспламеняемые: плиты из ДСП, рубероид.
- Д – дымообразующие (ПВХ).
- Т – токсичные (минимальный уровень – у бумаги).
Звукоизоляция
Характеристика, связанная с паропроницаемостью и плотностью. Ваты исключают проникновение посторонних шумов в помещении, через пены проникает больше шума.
У плотных материалов лучше шумоизоляционные свойства, но укладка осложняется толщиной и весом. Оптимальным вариантом для самостоятельных теплоизоляционных работ будет каменная вата с высоким звукопоглощением. Аналогичные показатели – у легкой стекловаты или базальтового утеплителя со скрученными длинными тонкими волокнами.