Вольфрам – полезные свойства и особенности металла  

История открытия и изучения

Свое название металл получил от минерала вольфрамит. Его начали добывать в XVI веке. Тогда его называли «волчьей пеной». Вольфрам часто встречался в оловянных рудах, мешал выплавлять этот металл. Он переводил его в пену шлаков.

Первое научное упоминание о нахождении нового химического элемента появилось в 1781 году. Тогда знаменитый химик из Швеции Карл Шееле работал с минералом шеелит. Он обрабатывал его азотной кислотой, в ходе чего получил новый химический элемент с желтым оттенком. Он назвал его «тяжелым камнем». Через два года, братья Элюар получили из саксонского минерала новый металл.

Если сравнивать защиту от ионизирующего излучения из свинца или вольфрама, второй вид металла выигрывает. Готовый защитный слой будет задерживать больше частиц при меньшем весе.

Вольфрамит

Общие сведения:

100Общие сведения
101НазваниеВольфрам
102Прежнее название
103Латинское названиеWolframium
104Английское названиеTungsten
105СимволW
106Атомный номер (номер в таблице)74
107ТипМеталл
108ГруппаПереходный металл
109ОткрытКарл Вильгельм Шееле, Швеция, 1781 г. (назван), Хуан Хосе Эльхуяр Любизе и Фаусто де Эльхуяр, Испания, 1783 г.
110Год открытия1783 г.
111Внешний вид и пр.Твёрдый, тугоплавкий, блестящий, серебристо-серый металл
112ПроисхождениеПриродный материал
113Модификации
114Аллотропные модификации2 аллотропные модификации:
— α-вольфрам с кубической объёмно-центрированной кристаллической решёткой,

— β-вольфрам с кубической кристаллической решёткой, именуемой фаза А15

115Температура и иные условия перехода аллотропных модификаций друг в друга
116Конденсат Бозе-Эйнштейна
117Двумерные материалы
118Содержание в атмосфере и воздухе (по массе)0 %
119Содержание в земной коре (по массе)0,00011 %
120Содержание в морях и океанах (по массе)1,2·10-8 %
121Содержание во Вселенной и космосе (по массе)5,0·10-8 %
122Содержание в Солнце (по массе)4,0·10-7 %
123Содержание в метеоритах (по массе)0,000012 %
124Содержание в организме человека (по массе)

Получение из руды и месторождения

В природе вольфрам можно встретить окисленными отложениями. Они образуются из трехокиси этого металла, которая соединяется с кальцием, марганцем, железом. Иногда в составе можно встретить медь, свинец, торий, некоторые редкоземельные элементы.

Минералы, насыщенные вольфрамом, чаще встречаются в грунтовых породах небольшими вкраплениями. В таком случае средняя концентрация тяжелого металла — до 2%.

Самые крупные месторождения вольфрама находятся в США, Китае, Канаде. Среднее мировое производство за год — 50 тысяч тонн.

Критическая отметка температуры для этого металла — 13610°C. При нагревании до таких показателей он превращается в газ.

Биологическая роль вольфрама

ограничена. Его сосед по группе молибден является незаменимым в ферментах, обеспечивающих связывание атмосферного азота. Ранее вольфрам использовался в биохимических исследованиях только как антагонист молибдена, т.е. замена молибдена на вольфрам в активном центре фермента приводила к его дезактивации. Ферменты, напротив, дезактивирующиеся при замене вольфрама на молибден, обнаружены в термофильных микроорганизмах. Среди них формиатдегидрогеназы, альдегид-ферредоксин-оксидоредуктазы; формальдегид-ферредо-ксин-оксидоредуктаза; ацетиленгидратаза; редуктаза карбоновой кислоты. Структуры некоторых из этих ферментов, например, альдегид-ферредоксин-оксидоредуктазы сейчас определены.

Тяжелые последствия воздействия вольфрама и его соединений на человека не выявлены. При длительном воздействии больших доз вольфрамовой пыли может возникнуть пневмокониоз, заболевание, вызываемое всеми тяжелыми порошками, попадающими в легкие. Наиболее частые симптомы этого синдрома – кашель, нарушения дыхания, атопическая астма, изменения в легких, проявление которых уменьшается после прекращения контакта с металлом.

Юрий Крутяков

Промышленное получение

Получение вольфрама промышленными предприятиями начинается с добычи руды, ее доставки на производство. Следующий этап — выделение триоксида из расходного материала. После этого он проходит процесс восстановления для получения очищенного металлического порошка. Процедуру восстановления проводят под воздействием водорода. При этом сырье нагревается до 700°C. Готовый порошок прессуется, спекается при температуре 1300°C в защитной атмосфере из водорода.

Переработка вольфрамового сырья.

Первичная руда содержит около 0,5% оксида вольфрама. После флотации и отделения немагнитных компонентов остается порода, содержащая порядка 70% WO3. Затем обогащенная руда (и окисленный лом вольфрама) выщелачивается с помощью карбоната или гидроксида натрия:

4FeWO4 + O2 + 4Na2CO3 = 4NaWO4 + 2Fe2O3 + 4CO2

6MnWO4 + O2 + 6Na2CO3 = 6Na2WO4 + 2Mn3O4 + 6CO2

WO3 + Na2CO3 = Na2WO4 + CO2

WO3 + 2NaOH = Na2WO4 + H2O

Na2WO4 + CaCl2 = 2NaCl + CaWO4Ї.

Полученный раствор освобождается от механических примесей, а затем подвергается переработке. Первоначально осаждается вольфрамат кальция с последующим его разложением соляной кислотой и растворением образовавшегося WO3 в водном аммиаке. Иногда очистку первичного вольфрамата натрия осуществляют с помощью ионообменных смол. Конечный продукт процесса – паравольфрамат аммония:

CaWO4 + 2HCl = H2WO4Ї + CaCl2

H2WO4 = WO3 + H2O

WO3 + 2NH3·

H2O(конц.) = (NH4)2WO4 + H2O

12(NH4)2WO4 + 14HCl(оч.разб.) = (NH4)10H2W12O42 + 14NH4Cl + 6H2O

Другим способом выделения вольфрама из обогащенной руды является обработка хлором или хлороводородом. Этот метод основан на относительно низкой температуре кипения хлоридов и оксохлоридов вольфрама (300° С). Способ применяется для получения особо чистого вольфрама.

Вольфрамитовый концентрат может быть сплавлен непосредственно с углем или коксом в камере с электрической дугой. При этом получают ферровольфрам, который используется при изготовлении сплавов в сталелитейной промышленности. Чистый концентрат шеелита также может быть добавлен в расплав стали.

Около 30% мирового потребления вольфрама обеспечивается за счет переработки вторичного сырья. Загрязненный лом карбида вольфрама, стружки, опилки и остатки порошкового вольфрама окисляются и переводятся в паравольфрамат аммония. Лом быстрорежущих сталей утилизируют в производстве этих же сталей (до 60–70% всего расплава). Лом вольфрама из ламп накаливания, электродов и химических реактивов практически не перерабатывается.

Основным промежуточным продуктом в производстве вольфрама является паравольфрамат аммония (NH4)10W12O41·

5H2O. Он является и основным транспортируемым соединением вольфрама. Прокаливая паравольфрамат аммония, получают оксид вольфрама(VI), который затем обрабатывают водородом при 700–1000° С и получают порошок металлического вольфрама. Спеканием его с углеродным порошком при 900–2200° С (процесс цементации) получают карбид вольфрама.

В 2002 цена паравольфрамата аммония – основного коммерческого соединения вольфрама – составляла около 9000 долл. за тонну в пересчете на металл. В последнее время появилась тенденция к снижению цен на вольфрамовую продукцию вследствие большого предложения со стороны Китая и стран бывшего СССР.

В России вольфрамовые продукты производят: Скопинский гидрометаллургический (Рязанская область, вольфрамовый концентрат и ангидрид), Владикавказский (Северная Осетия, вольфрамовый порошок и слитки), Нальчикский Гидрометаллургический завод (Кабардино-Балкария, металлический вольфрам, карбид вольфрама), Кировградский завод твердых сплавов (Свердловская область, карбид вольфрама, вольфрамовый порошок), Электросталь (Московская область, паравольфрамат аммония, карбид вольфрама), Челябинский Электрометаллургический завод (ферровольфрам).

Марки

Марки вольфрама:

  1. ВР — соединение вольфрама с рением.
  2. ВТ, ВИ, ВЛ — к основе добавляется присадка окиси лантана, тория, иттрия.
  3. ВРН — металл без присадок. Допускается наличие небольшого количества разных примесей.
  4. ВМ — к основе добавляются разные присадки. Основные — кремнещелочные, алюминиевые.
  5. МВ — соединение молибдена с вольфрамом. Сохраняется пластичность одновременно с повышением прочности.
  6. ВЧ — чистый металл без примесей, присадок.
  7. ВА — соединение основы с алюминием, кремнещелочными присадками.

Лампы накаливания не просто так имеют стеклянную герметичную капсулу. Поскольку вольфрам быстро окисляется на открытом воздухе, капсула заполняется инертным газом.

Лампа накаливания

Свойства

Чтобы понять, где лучше применять вольфрам, нужно знать свойства этого металла. Сейчас про этот материал известно достаточно информации, чтобы определить сферы его применения.

Химические

Свойства:

  1. Валентность чистого металла — 6. У соединений на его основе она может изменяться от 2 до 5.
  2. Молярная масса химического элемента —183,84.
  3. Элемент имеет орбиту, состоящую из двух ярусов.

Вольфрам — химически активный металл. Он вступает в реакции с разными веществами с образованием сложных, простых соединений. При нагревании реакции протекают быстрее. Для дополнительного ускорения реакции можно добавить водяные пары.

Физические

Свойства:

  1. Цвет — серый.
  2. Прозрачность — отсутствует.
  3. Металлический блеск — есть.
  4. Твердость — 7,5 (показатель указан согласно шкале Мооса).
  5. Плотность — 19,3 г/см3.
  6. Радиоактивность — 0.
  7. Теплопроводность — 173 Вт/(м·К).
  8. Электропроводность — 55·10−9 Ом·м.
  9. Показатель твердости по Бринеллю — 488 кгс/мм².
  10. Теплоемкость — 134,4 Дж/(кг·град).
  11. Температура плавления — 3380 °C (показатель зависит от количества примесей).
  12. Сопротивление электричеству — 55·10−9 Ом·м (при условии соблюдения температурного режима в 20°C).
  13. Температура кипения — около 5555 °C.

Лучше всего металл куется при нагревании до 1600°C.

На основе вольфрама изготавливают тяжелые сплавы. Общее содержание основы может достигать 97%. Готовые сплавы применяются для изготовления контейнеров, в которых будут храниться, переноситься радиоактивные вещества. Главная особенность емкости — возможность поглощения части гамма-излучения.

Как используется

Свойства вольфрама обозначили главного потребителя. Это металлургия. Она создает конечный продукт и исходники для других отраслей промышленности.

Порошковый вольфрам – основа либо компонент твердых, жаропрочных износоустойчивых сплавов, премиальных марок сталей.

Металл, сплавы

Из тугоплавкого металла и сплавов создают широкий ассортимент продукции:

  • Узлы и детали авиационных, ракетных двигателей.
  • Элементы электровакуумных приборов (кинескопы, нити накаливания).

    Нить накаливания из вольфрама

  • Нагреватели вакуумных печей.
  • Электроды для аргонно-дуговой сварки. Они не плавятся, создают прочный сварной шов. Пригодны для материалов любого состава (цветные металлы, легированные стали, другие).
  • Емкости для радиоактивных продуктов. Здесь решающими оказались преимущества металла перед свинцом.
  • Хирургический инструментарий.

Характеристики металла подошли оборонному комплексу: танковая, торпедная броня, крупнокалиберные снаряды, пули. А также суперскоростные роторы гироскопов, контролирующих траекторию полета баллистических ракет.

вольфрам в слитках

Соединения

Обширен спектр применения вольфрамовых соединений:

  • Без дителлурида невозможно преобразование тепла в электричество.
  • Карбид – основа сплавов и композитов для механической обработки металлов и неметаллов. У горнодобытчиков, нефтяников, газовиков – для бурения скважин.
  • Сульфид – термостойкая (до 500°C) смазка.
  • Трехокись – материал для создания электролита топливных элементов, работающих при повышенных температурах.

Соединения вольфрама закупают производители лаков, красок, текстиля.

Другие формы

Изотоп W184 – компонент сплавов с изотопами урана. Из них делают ракетные двигатели на ядерном топливе.

Радионуклид искусственного происхождения (W185) востребован как детектор излучений (включая рентгеновское) ядерным сегментом физики и медицины.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]