ГОСТ 27142-97 Редукторы конические и коническо-цилиндрические. Параметры

Конический редуктор — это самостоятельный механизм, который при помощи муфт или открытых передач соединяется с электродвигателем и рабочей машиной. Выполняется в виде агрегата, предназначенного для передачи мощности от двигателя к остальным рабочим механизмам. Схема привода может также включать как открытые зубчатые передачи, так и ременную или цепную передачи, закрепленные на валы, которые опираются на подшипники в гнездах корпуса. Основным предназначением прибора является повышение вращающего момента ведомого вала при одновременном снижении угловой скорости.

Конструкция №2

Редуктор конический одноступенчатый с горизонтальным быстроходным и вертикальным тихоходным валами. Особенностью конструкции редуктора является система смазывания и защиты подшипников. Зацепление смазывается окунанием шестерни в масло. Подшипники ведущего вала смазываются раздельно и каждый подшипник имеет двустороннее мазеудерживающее устройство. Нижний подшипниковый узел защищен от попадания в него жидкого масла двумя стаканами, неподвижно закрепленными: один — на корпусе, а другой — на колесе. Стакан, закрепленный на колесе, имеет форму расширяющегося книзу конуса, что обеспечивает отбрасывание масла от вала при вращении.

Принцип работы газового редуктора

По типу конструкции устройства подразделяются на два основных вида — прямые и обратные. Не углубляясь в тонкости конструкции, можно сказать, что работа газового редуктора направлена на понижение выходного давления до требуемого показателя при помощи системы мембран, пружин и клапанов. Для сжатых газов редукторы рассчитываются на входное давление до 250 атмосфер, для сжиженных — до 25 атмосфер. На выходе баллонные редукторы регулируют давление в диапазоне 1-25 атмосфер. Контроль над входным и выходным давлением осуществляется при помощи независимых встроенных манометров (1 или 2).

Конструкция №3

Редуктор конический одноступенчатый с углам между осями валов, не равным 90º. Редуктор имеет ограниченное применение. При большой нагрузочной способности зацепления и значительной частоте вращения быстроходного вала применяется конструкция подшипникового узла исполнения II. Роликоподшипники с короткими цилиндрическими роликами воспринимают радиальную нагрузку, а радиальный шарикоподшипник, установленный в стакане с зазором, осевую нагрузку.

В подшипниковом узле исполнения III конические подшипники установлены «врастяжку». При сборке конической передачи регулируются вначале подшипники — осевым перемещением внутреннего кольца подшипника с помощью круглой гайки, а затем зацепление перемещением вала-шестерни в осевом направлении путем изменения толщины набора тонких металлических прокладок между корпусом и фланцем стакана.

Передачи и параметры конического редуктора

Вид редуктора зависит от состава передач и положения осей вращения валов. Различают такие типы передач: цилиндрическая, планетарная, коническая, червячная, глобоидная и волновая. Одной из разновидностей углового редуктора является конический, который служит для уменьшения частоты вращения при одновременном повышении вращающего момента. В корпусе механизма находятся передачи с постоянным передаточным отношением.

Конический редуктор

Конический редуктор имеет следующие параметры: невысокая окружная скорость, средний уровень надежности, точности и металлоемкости, сравнительно низкая себестоимость и трудоемкость. Кроме того, в зависимости от вида передач, расположения осей валового механизма и числа ступеней конические редукторы подразделяются на соосные механизмы, параллельные приспособления, скрещивающиеся и пересекающиеся устройства, могут иметь горизонтальное или вертикальное расположение осей валового механизма и крепиться либо на плиточной основе, либо на приставных опорных лапах. Также ось выходного валового механизма может находиться сбоку, сверху или снизу, относительно плоскости основания.

Современный конический редуктор имеет колесное соединение с круговыми зубьями. Чтобы избежать отрицательной осевой силы на шестерне необходимо, соблюдать совпадение направления вращения зубчатого колесного соединения и наклона линии зуба. Диапазон передаточных чисел составляет от 1 до 5, наиболее распространенный угол наклона равен 350. Существуют также коническо-цилиндрические редукторы, которые выполняют с быстроходной конической ступенью.

Исполнения быстроходного вала для конического редуктора.

Исполнения быстроходного вала конического редуктора для случая применения между электродвигателем и редуктором ременной или цепной передачи представлены на рис. 1…4.

Рис. 1, 3, 4 — подшипники вала шестерни и шкива (звездочки) раздельны. Шкив (звездочка) опирается через два своих подшипника на стакан. Вал разгружен от сил натяжения ремня, крутящий момент со шкива (звездочки) передается или через упругую муфту и шлицы (рис. 3), или через жесткую компенсирующую муфту (рис. 1), или через шлицы (рис. 4).

Рис. 2 — шкив расположен непосредственно на валу и нагружает его силами от натяжения ремня.

  • Кинематические схемы редукторов
  • Редуктор с вертикальными валами
  • Редуктор с двумя быстроходными валами.
  • Редуктор двухступенчатый
  • Редуктор двухступенчатый соосный
  • Варианты исполнений опор валов цилиндрического двухступенчатого соосного редуктора
  • Редуктор с торсионными валами
  • Редуктор двухступенчатый трехпоточный соосный
  • Редуктор соосный цилиндрический с внутренним зацеплением тихоходной ступени
  • Мотор-редуктор МЦ2С-125
  • Редуктор цилиндрический Ц2-160
  • Редуктор цилиндрический двухступенчатый 1Ц2У.
  • Редуктор Ц2-200.
  • Редуктор специальный
  • Редуктор Ц3КФ-100
  • Редуктор РТЦ-500.
  • Редуктор трехступенчатый
  • Редуктор РЦТ-1015.
  • Редуктор конический К-125.
  • Редуктор коническо-цилиндрический
  • Редуктор червячный.
  • Мотор-редуктор цилиндрическо-червячный.
  • Редуктор цилиндрическо-червячный.
  • Редуктор червячный двухступенчатый.

Расчет конического редуктора

Главным параметром конического редуктора является реальный диапазон передаточных отношений, который составляет 6,3 (в других вариантах может находиться в диапазоне от 1 до 1000). Основная сфера применения — это передача вращающего момента между валовыми механизмами. В качестве недостатка конического редуктора, можно назвать сравнительную сложность при их производстве и выполнении монтажных операций.

При изготовлении конического редуктора рассчитывается передача по контактным напряжениям, в ходе данного процесса проверяется напряжение изгиба, и определяются объемный размер и масса зубчатых колесных приспособлений, размеры корпусного основания оборудования и цельный вес конического редуктора. На все перечисленные параметры оказывает существенное влияние выбор разновидности термической обработки.

Конический редуктор 1

По сравнению с аналогичными механизмами, можно выделить следующие преимущества конического редуктора:

— повышенная безопасность при эксплуатации; — высокая аксиальная и радиальная несущая способность; — некоторое увеличение вращающего момента на выходе; — бесшумность в рабочем состоянии; — длительный срок службы и сравнительная простота в ремонте и техобслуживании.

К недостаткам относится сложная технология производства и монтажа конического редуктора, а также большие осевые и изгибные нагрузки на валовый механизм.

Конический редуктор 2

Цилиндрические агрегаты

Наиболее распространенные варианты. Они служат на всех сферах производства промышленности, преимуществом данного вида является его простота, и отсутствие необходимости в охлаждении, поскольку нагреваться там нечему.

Такой класс ещё и имеет очень высокий коэффициент полезного действия — до 98 %! Некий АК-47 в мире машинных конструкций.

Способность выдерживать большие нагрузки снимает ограничение в сферах их использования. Они применяются как в металлорежущих станках, так и в мешалках и измельчителях.

Виды редукторов: их назначение и устройство

Технические характеристики редуктора

Для того, что бы правильно выбрать редуктор для применения в составе привода необходимо знать его основные параметры:

  • тип редуктора;
  • главный параметр;
  • передаточное отношение;
  • частота вращения;
  • крутящий момент;
  • радиальная нагрузка;
  • КПД;
  • ресурс;
  • уровень шума;
  • вариант исполнения.

Рассмотрим эти параметры более подробно.

Тип редуктора зависит от варианта применяемой передачи. Основные типы передающих ступеней это цилиндрические, червячные, конические, планетарные или волновые. Редуктор может состоять как из одной, двух и более ступеней одного вида. Так же используются редукторы, совмещающие различные типы ступеней, например червячно-цилиндрический или планетарно-червячный. Существуют еще несколько видов передач, таких как червячные-глобоидные, спироидные, цевочные и другие. Но они являются дальнейшим развитием уже указанных основных типов передач. Выбор редуктора зависит от его назначения, ограничений по массе, крутящему моменту, габаритам, компоновке элементов привода. Главный параметр – геометрическая характеристика, которая определяет массогабаритные и энергосиловые параметры. Зависит от типа редуктора и определяется в соответствии с ГОСТ 31592-2012. В цилиндрическом редукторе это расстояние между осями тихоходной и соседней ступеней (рис. 1-размер AwT);

  • в червячном – расстояние между осями червяка и колеса;
  • в планетарном – половина диаметра водила;
  • в коническом – делительный диаметр большего из колес;
  • в волновом редукторе – внутренний диаметр гибкого диска.

Передаточное отношение – показывает, во сколько раз изменяется крутящий момент и частота вращения на тихоходном (выходном) валу редуктора, по сравнению с входным валом. Безразмерная величина. Это ключевой параметр работы редуктора, равный произведению всех передаточных чисел его ступеней. Чем их больше, тем больше будет общее передаточное отношение редуктора.

В таблице указаны нормативные показатели передаточных чисел для одной степени разных типов:

При увеличении числа ступеней, как например в 3х ступенчатом цилиндрическом редукторе или совмещении различных типов – планетарно-цилиндрической можно получить передаточное отношение редуктора в несколько тысяч единиц. Номинальный крутящий момент – выражается в Н*м и регламентирует величину максимального прилагаемого усилия на вал, при котором редуктор может выполнять свои функции. Параметры эксплуатации редуктора указываются в паспорте или руководстве по эксплуатации. Радиальная нагрузка – усилие, которое может воспринимать концевой участок тихоходного или быстроходного вала, возникающее от присоединенных элементов конструкции, например ременной передачи или муфты. Если не превышать эту нагрузку, редуктор так же отработает без поломок весь положенный срок. Частота вращения – показывает количество оборотов, которое вал редуктора совершает в минуту. Указывается как для тихоходного (выходного) так и для быстроходного (входного) валов. Превышать этот параметр так же не рекомендуется, т.к. износ рабочих поверхностей ступеней и подшипников произойдет намного быстрее. Коэффициент полезного действия (КПД), безразмерная величина, определяется отношением затраченной энергии к полезной работе, т.е. мощности, полученной на выходном валу. В современных редукторах в зависимости от типа редуктора КПД варьируется от 0,4 до 0,99. Наиболее производительные – цилиндрические, конические, планетарные, наименее – червячные и волновые редукторы, в связи с особенностями конструкции. Ресурс – измеряется в часах и показывает, какое время редуктор способен работать в паспортном режиме до определенного уровня износа. Паспортный режим – это ограничение по нагрузкам, скорости, типу используемого масла и его температуры. Наступление износа не означает вывод редуктора из строя, но дальнейшая эксплуатация может привести к неожиданной поломке и дорогостоящему ремонту. Так же для обеспечения ресурса необходимо проводить своевременное техническое обслуживание редуктора. Некоторые производители указывают вместо ресурса срок службы в годах при определенном режиме нагрузки. Шумовые характеристики – предельная величина шума, создаваемая редуктором на номинальном режиме работы, превышение которой не допустимо, измеряется в децибелах (дБ). Исполнение редуктора – краткое цифровое обозначение, указывающее на основные конструктивные особенности, такие как: расположения валов (соосное, параллельное, перпендикулярное), вариант исполнения корпуса и монтажные позиции. На рисунке указаны различные варианты исполнения корпуса — на лапах (а), с фланцем (б), с полым входным валом (в). В случае «а» нагрузка будет подведена через ременную передачу или муфту, в случае «б» вал редуктора центруется с отверстием исполнительного механизма и крепится с помощью фланца, в случае «в» редуктор «насаживается» на вал исполнительного механизма и крепится к корпусу через реактивную тягу – рычаг, препятствующий проворачиванию редуктора на валу.

Монтажное исполнение так же может быть различным – сверху, сбоку, спереди, сзади. Более наглядно это изображено на рисунке:

Климатическое исполнение – этот параметр обязателен не только для редукторов, но и в целом для любого промышленного оборудования или изделия. Показывает, в каких климатических условиях (температура, влажность, осадки и т.д.) допустима эксплуатация, определяется ГОСТ 15150-69. В заключение приведем пример обозначения редуктора:

Волновые передачи

Появление и дальнейший процесс развития волновой передачи был осуществлен в далеком 1959 году. Изобретателем, а также человеком, который запатентовал эту технологию, стал американский инженер Массер.

Волновой редуктор состоит из нескольких основных элементов:

  • Неподвижное колесо, имеющее внутренние зубья.
  • Вращающееся колесо, имеющее наружные зубья.
  • Водило.

Среди преимуществ, которые можно выделить у этого способа передачи движения, — меньшая масса и размеры устройства, более высокая точность с кинематической точки зрения, а также меньший мертвый ход. Если есть необходимость, то использовать такой тип передачи движения можно и в герметичном пространстве, не используя при этом уплотняющие сальники. Данный показатель наиболее важен для такой техники, как авиационная, космическая, подводная. Кроме того, волновой редуктор применяется и в некоторых машинах, использующихся в отрасли химической промышленности.

1.2.2 Червячный глобоидный редуктор

Винт глобоидного червячного редуктора имеет выпуклую форму (в других червячных передачах он цилиндрический). Эта конструктивная особенность увеличивает передачу крутящего момента и мощность привода.

Глобоидные редукторы предназначены для использования в условиях, предполагающих высокую надежность, отсутствие обратного проскальзывания и динамических толчков на выходном валу. Чаще всего редукторы этого типа применяются в барабанных приводах лифтов: глобоидная пара адаптирована к переменным нагрузкам, возникающим при подъеме и торможении кабины, в состоянии поддерживать нормальную реверсивность при эксплуатации.

Таблица 2. Допустимые нагрузки для червячных глобоидных редукторов типа ЧГ

ТипоразмерыНоминальное передаточное числоЧастота вращения червяка, об/мин
75010001500
Рвх, кВтТвых, Н мРвх, кВтТвых,Н·мРвх, кВтТвых, Н·м
Чг-63101,21201,51,9110
12,51,11301,31301,7110
161,01501,21501,5130
200,81500,91501,3130
250,51250,61100,8110
31,50,41100,51100,690
400,31100,31000,590
500,21000,31000,390
630,1900,2900,380
Чг-80102,42502,82203,1170
12,52,02602,42402,6180
161,62601,92402,1180
201,53001,72601,8200
251,02501,12201,5190
31,50,72200,82001,1180
400,62200,72000,9180
500,52100,51800,6160
630,32000,41700,5150
Чг-100104,34604,73806,3350
12,53,85004,04005,5380
163,05003,64504,6400
202,75503,25003,9420
252,05002,34503,0400
31,51,44201,63802,1350
401,24201,33801,8350
500,94001,03501,3320
630,73800,83201,1300
Чг-125108,490010,485012,3700
12,57,19508,990010,0700
165,69507,09008,5750
205,311006,310007,8850
254,010004,69005,2700
31,52,99003,48003,9650
402,49002,88003,2650
501,78002,17502,6650
631,47501,77002,1600
Чг-1601016,7185020,3170028,31600
12,513,9190016,3170022,81600
1611,0190013,7180018,61650
209,7205011,9190016,51800
257,619508,6170011,21500
31,55,718006,415508,21350
404,618005,115506,61350
503,616504,014505,01250
632,815503,414504,11200

Корпуса редукторов

Главные требования к корпусу редуктора – жесткость и прочность, исключающие вероятность перекоса валов. В современном производстве редукторов выпускаются два типа корпусов – разъемные и неразъемные.

Конструкция разъемного корпуса включает в себя основание и съемную крышку. Отдельные модели вертикальных цилиндрических редукторов имеют разъемы по 2-3 плоскостям. Чтобы предотвратить протекание масла, разъемы корпуса редуктора обрабатывают герметиком. Устанавливать прокладки между крышкой и основанием не рекомендуется, так как при фиксации крепежных болтов они деформируются. Как следствие, посадка подшипников может быть нарушена.

Неразъемный корпус чаще используется для червячных редукторов и других типов оборудования, имеющих легкий вес. В такой конструкции предусмотрена съемная крышка.

Для производства корпусов редукторов используется, главным образом, чугун марок СЧ 10-15. Листовая сталь применяется реже, как правило, при комплектации габаритного приводного оборудования по индивидуальному заказу. У стального сварного корпуса толщина стенок примерно на треть меньше, чем у чугунных редукторов. В последнее время для производства корпусов все чаще используются алюминиевые сплавы.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: emp-tg@cp9.ru