5 частых вопросов, которые задают начинающие радиомеханики; 5 лучших транзисторов для регуляторов, тест на определение состава схемы
Регулятор электрического напряжения нужен для того, чтобы величина напряжения могла стабилизироваться. Он обеспечивает надежность работы и долговечность работы прибора.
Регулятор состоит из нескольких механизмов.
ТЕСТ:
Ответы на эти вопросы позволят узнать состав схемы регулятора напряжения 12 вольт и её сборку.
- Какое сопротивление должно быть у переменного резистора?
a) 10 кОм
b) 500 кОм
- Как нужно подключать провода?
a) 1 и 2 клемма – питание, 3 и 4 – нагрузка
b) 1 и 3 клемма – нагрузка, 2 и 4 — питание
- Нужно ли устанавливать радиатор?
a) Да
b) Нет
- Транзистор должен быть
a) КТ 815
b) Любой
Ответы:
Вариант 1. Сопротивление резистора 10 кОм – это стандарт для установки регулятора, провода в схеме подключаются по принципу: 1 и 2 клемма для питания, 3 и 4 для нагрузки – ток распределится правильно по нужным полюсам, радиатор устанавливать нужно – чтобы защитить от перегрева, транзистор использован КТ 815 – такой всегда подойдет. В таком варианте построенная схема сработает, регулятор станет работать.
Вариант 2. Сопротивление 500 кОм – слишком высокое, будет нарушена плавность звука в работе, а может не сработать вообще, 1 и 3 клемма это нагрузка, 2 и 4 питание, радиатор нужен , в схеме, где стоял минус будет плюс, транзистор любой – действительно можно использовать какой угодно.Регулятор не заработает из-за того, что схема собрана, будет неправильно.
Вариант 3. Сопротивление 10кОм, провода – 1 и 2 для нагрузки, 3 и 4 для питания, резистор имеет сопротивление 2кОм, транзистор КТ 815. Прибор не сможет заработать, так как он сильно перегреется без радиатора.
Как соединить 5 частей регулятора на 12 вольт.
Переменный резистор 10кОм.
Это переменный резистор 10ком. Изменяет силу тока или напряжений в электрической цепи, увеличивает сопротивление. Именно им регулируется напряжение.
Радиатор. Нужен для того, чтобы охладить приборы в случае их перегрева.
Резистор на 1 ком. Снижает нагрузку с основного резистора.
Транзистор. Прибор, увеличивает силу колебаний. В регуляторе он нужен, чтобы получить электрические колебания высокой частоты
2 проводка. Необходимы для того, чтобы по ним шел электрический ток.
Берем транзистор и резистор. У обоих есть 3 ответвления.
Проводятся две операции:
- Левый конец транзистора (делаем это алюминиевой частью вниз) присоединяем к концу, который находится в середине резистора.
- А ответвление середины транзистора соединяем с правым у резистора. Их необходимо припаять друг к другу.
Первый провод необходимо спаять с тем, что получилось во 2 операции.
Второй нужно спаять с оставшимся концом транзистора.
Прикручиваем к радиатору соединенный механизм.
Резистор на 1кОм припаиваем к крайним ножкам переменного резистора и транзистора.
Схема готова.
Как сделать диагностику без снятия?
Не рекомендуется проводить такую проверку, так как нет возможности оценить состояние щеточного узла. Но случаи бывают разные, поэтому даже такая диагностика может дать свои плоды. Для работы вам потребуется мультиметр или, если такового нет, лампа накаливания. Для вас главное – это провести замер напряжения в бортовой сети автомобиля, определить, нет ли скачков. Но их можно заметить и при езде. Например, мигание света при изменении оборотов коленчатого вала двигателя.
Но точнее окажутся измерения, проведенные с использованием мультиметра или вольтметра с растянутой шкалой. Заведите двигатель и включите ближний свет. Подключите мультиметр к клеммам аккумуляторной батареи. Напряжение не должно превышать 14,8 Вольт. Но и нельзя, чтобы оно опускалось ниже 12. Если оно находится не в дозволенном интервале, то имеется поломка регулятора напряжения. Не исключено, что нарушены контакты в местах соединения прибора с генератором, либо окислены контакты проводов.
Регулятор скорости двигателя постоянного тока с помощью 2 конденсаторов на 14 вольт.
Практичность таких двигателей доказана, они используются в механических игрушках, вентиляторах и др. У них малый ток потребления, поэтому требуется стабилизация напряжения. Часто возникает необходимость подстройки частоты вращения или изменения скорости двигателя для корректировки выполнения цели, представленной какому – либо типу электродвигателя любой модели.
Эту задачу выполнит регулятор напряжения, который совместим с любым типом блока питания.
Чтобы это осуществить, надо изменить выходное напряжение, не требующее большого тока нагрузки.
Необходимые детали:
- 2 Конденсатора
- 2 переменных резистора
Соединяем части:
- Подключаем конденсаторы к самому регулятору.
- Первый резистор подключается с минусом регулятора, второй на массу.
Теперь менять скорость двигателя у прибора по желанию пользователя.
Регулятор напряжения на 14 вольт готов.
Простой регулятор напряжения 12 вольт
Особенности регулировки
Речь о том или ином регуляторе 12 вольт имеет смысл вести только при указании дополнительных данных:
- постоянное или переменное напряжение надо регулировать;
- какова максимальная величина тока в нагрузке;
- величина разности потенциалов перед регулятором;
- параметры напряжения на нагрузке в диапазоне регулирования.
Каждый из перечисленных параметров связан с определенными техническими решениями, которые отражаются в схеме. Общая схема регулятора – это нагрузка, которая соединена с некоторым устройством. Оно условно обозначено прямоугольником на схеме, показанной далее. Внутри этого прямоугольника может быть та или иная схема, которая соответствует дополнительным данным, упомянутым выше. Простейшим регулятором является переменный резистор. Он позволяет без искажений регулировать переменное напряжение. Также такой резистор применим и при постоянном токе.
Схема с переменным резистором.
Элементарная схема регулятора Схема с переменным резистором
Если разность потенциалов на входе значительно больше 12 вольт на выходе, в регуляторе будет теряться энергия. На переменном резисторе будет выделяться тепло. Чтобы избежать потерь тепла, на переменном токе надо применить переменную индуктивность, которой может стать ЛАТР. Его пропускная способность ограничивается, как и в переменном резисторе, конструкцией подвижного контакта. Но если допустимо переключение путем переставления между витками перемычки с надежными контактами, можно получать значительную силу тока.
Индуктивный регулятор
Другим способом регулирования своими руками переменного напряжения 12 вольт может быть изменение индуктивности регулятора. Для этого вручную изменяется либо зазор, либо число витков, специально предназначенных для этого. По такому принципу устроен регулируемый сварочный трансформатор, используемый для электропитания вольтовой дуги. Если регулятор напряжения 12 вольт не обладает свойствами стабилизатора и управляется своими руками, разность потенциалов на нагрузке необходимо контролировать вольтметром.
Переменный резистор и переменная индуктивность могут быть использованы и как регулятор тока. В этом случае необходимо контролировать ток в нагрузке амперметром. Если параметры напряжения на нагрузке не оговорены, за исключением его величины в 12 В, регулировать можно диммером. Это может быть мощный регулятор, поскольку он обычно выполнен на основе тиристора. А современные тиристоры выпускаются для очень широкого диапазона разности потенциалов и тока.
Регулятор оборотов 12 вольт для двигателя с тормозом.
Состав:
- Реле – 12 вольт
- Теристор КУ201
- Трансформатор для запитки двигателя и реле
- Транзистор КТ 815
- Вентиль от дворников 2101
- Конденсатор
Используется для регулировки подачи проволоки, поэтому в ней присутсвует тормоз двигателя, реализованный с помощью реле.
К реле подключаем 2 провода от блока питания. На реле подается плюс.
Всё остально подключается по принципу обычного регулятора.
Схема полностью обеспечила 12 вольт для двигателя.
Где купить регуляторы напряжения?
Купить качественный инверторный регулятор напряжения для домашних электроприборов можно в нашем официальном интернет-магазине или на сайтах наших партнеров.
Наш интернет-ресурс обладает полной информацией по каждой модели стабилизатора, включая описание технических характеристик, особенностей работы, дополнительного функционала и сфер применения. В карточке каждого товара есть реальные отзывы пользователей о работе оборудования.
Заказать изделия могут как физические, так и юридические лица. При оформлении заказа можно выбрать удобный способ оплаты или оформить кредит. Для выбора доступны как самовывоз, так и быстрая курьерская доставка в любой город России с помощью ведущих транспортных компаний.
Если для подбора оборудования информации недостаточно, то можно обратиться за консультацией к специалистам нашей компании в онлайн-чате, по электронной почте или телефону.
Регулятор мощности на симисторе BTA 12-600
Симистор – полупроводниковый аппарат, причисляется к разновидности тиристора и используется в целях коммутации тока. Он работает на переменном напряжении в отличие от динистора и обычного тиристора. От его параметра зависит вся мощность прибора.
Ответ на вопрос. Если схема собиралась бы на тиристоре, необходим был бы диод или диодный мост.
Для удобства схему можно собрать на печатной плате.
Плюс конденсатора нужно припаять к управляющему электроду симистора, он находится справа. Минус спаять с крайним третьим выводом, который находится слева.
К управляющему электроду симистора припаять резистор с номинальным сопротивлением 12 кОм. К этому резистору нужно присоединить подстрочный резистор. Оставшийся вывод нужно припаять к центральной ножке симистора.
К минусу конденсатора, который припаян к третьему выводу симистора необходимо прикрепить минус от выпрямительного моста.
Плюс выпрямительного моста к центральному выводу симистора и к той части, к которой симистор крепится на радиатор.
1 контакт от шнура с вилкой припаиваем к необходимому прибору. А 2 контакт к входу переменного напряжения на выпрямительном мосту.
Осталось припаять оставшийся контакт прибора с последним контактом выпрямительного моста.
Идет тестирование схемы.
Включаем схему в сеть. С помощью подстрочного резистора регулируется мощность прибора.
Мощность можно развить до 12 вольт для авто.
Схема номер 1
Имелся стабилизированный импульсный блок питания, дающий на выходе напряжение 17 вольт и ток 500 миллиампер. Требовалось периодическое изменение напряжения в пределе 11 – 13 вольт. И общеизвестная схема регулятора напряжения на одном транзисторе с этим прекрасно справлялась. От себя добавил к ней только светодиод индикации да ограничительный резистор. К слову, светодиод здесь это не только «светлячок» сигнализирующий о наличии выходного напряжения. При правильно подобранном номинале ограничительного резистора, даже небольшое изменение выходного напряжения отражается на яркости свечения светодиода, что даёт дополнительную информацию о его повышении или понижении. Напряжение на выходе можно было изменять от 1,3 до 16 вольт.
КТ829 — мощный низкочастотный кремниевый составной транзистор, был установлен на мощный металлический радиатор и казалось, что при необходимости он вполне может выдержать и большую нагрузку, но случилось короткое замыкание в схеме потребителя и он сгорел. Транзистор отличается высоким коэффициентом усиления и применяется в усилителях низкой частоты – видно действительно его место там а не в регуляторах напряжения.
Слева снятые электронные компоненты, справа приготовленные им на замену. Разница по количеству в два наименования, а по качеству схем, бывшей и той, что решено было собрать, она несопоставима. Напрашивается вопрос – «Стоит ли собирать схему с ограниченными возможностями, когда существует более продвинутый вариант «за те же деньги», в прямом и переносном смысле этого изречения?»
Динистор и 4 типа проводимости.
Это устройство, называется тригерным диодом. Обладает небольшой мощностью. В его внутренности нет электродов.
Динистор открывается при наборе напряжения. Скорость набора напряжения определяется конденсатором и резисторами. Вся регулировка производится через него. Работает на постоянном и переменном токе. Его можно не покупать, он находится в энергосберегающих лампах и его легко оттуда достать.
В схемах используется не часто, но чтобы не затрачивать деньги на диоды, применяют динистор.
Он содержит 4 типа: P N P N. Это сама электрическая проводимость. Между 2 прилегающими друг к другу областями образуется электронно-дырочный переход. В динистре таких переходов 3.
Схема:
Подключаем конденсатор. Он начинает заряжаться с помощью 1 резистора, напряжение почти равно тому, что в сети. Когда напряжение в конденсаторе достигнет уровня динистора, он включится. Прибор начинает работать. Не забываем про радиатор, иначе всё перегреется.
Критерии подбора стабилизатора для защиты бытовых электроприборов
Рассмотрим основные критерии выбора модели стабилизатора напряжения для защиты бытовой нагрузки.
Критерий подбора | Описание |
Фазность | Как известно, для сети 220/230 В применим только однофазный стабилизатор. Однако, если в дом проведена трехфазная сеть, то можно воспользоваться разными вариантами организации защиты оборудования, а именно:
|
Выходная мощность | Чтобы у стабилизатора не возникала перегрузка, его выходная мощность должна быть больше на 20-30% суммарной потребляемой мощности подключаемого оборудования. При этом важно учитывать возможные пусковые токи нагрузки, имеющей в своем составе электромоторы, например, холодильника, стиральной машины или насоса. Так как при их возникновении мощность такой техники может увеличиваться в несколько раз. Информацию о данном параметре нагрузки можно узнать в паспорте изделия. |
Рабочий диапазон входного напряжения | У каждой модели стабилизатора есть свой рабочий диапазон напряжений. И если параметры сети будут выходить за его рамки, устройство уйдет в защиту и отключится, обесточив нагрузку. Поэтому изделие нужно подбирать, исходя из того, какие перепады напряжения бывают в домашней электросети. Для этого требуется самостоятельно или с помощью специалистов выполнить соответствующие замеры. |
Точность коррекции напряжения | Погрешность значения выходного напряжения стабилизатора должна соответствовать требованиям подключаемой нагрузки. Данный параметр также указывается в паспорте изделия. Как правило, для большинства бытовых приборов оно составляет 5-7%, для светильников – 3%, а для высокоточной аппаратуры – до 1%. |
Форма выходного напряжения | Для некоторых видов нагрузок важна не только высокая точность выходного сигнала, но и его форма. Искаженная синусоида может негативно сказаться на работе оборудования с электромоторами, систем освещения, аудио- и видеоаппаратуры, котлов отопления с циркуляционными насосами и др. Для таких электроприборов требуется напряжение только идеальной синусоидальной формы. |
Виды электронной защиты | Чем больше у стабилизатора установлено электронных защит, тем лучше он защищен от проблем в электросети и, соответственно, эффективнее оберегает от их негативного воздействия подключенное оборудование. |
Место установки | В зависимости от размеров места установки и его предназначения (жилое или нежилое помещение), стабилизатор подбирается по двум параметрам:
|
Дополнительный функционал | Часто стабилизаторы обладают дополнительным функционалом, который может быть полезным для пользователя. Например, некоторые модели оснащаются возможностью организации удаленного контроля их работы через интернет, позволяют настраивать значение выходного напряжения под требования нагрузки или имеют дополнительные разъемы для удобного подключения группы оборудования. |
Топ 5 транзисторов
Разные виды транзисторов применяются для разных целей, и существует необходимость его выбирать.
- КТ 315. Поддерживает NPN структуру. Выпущен в 1967 году, но до сих пор используется. Работает в динамическом режиме, и в ключевом. Идеален для приборов малой мощности. Больше подходит для радиодеталей.
- 2N3055. Лучше всего подходит для звуковых механизмов, усилителей. Работает в динамическом режиме. Спокойно используется для регулятора 12 вольт. Удобно крепится на радиатор. Работает на частотах до 3 МГц. Хоть транзистор и выдерживает только до 7 ампер, он вытягивает мощные нагрузки.
- КП501. Производитель рассчитывал его на применение в телефонных аппаратах, механизмах связи и радиоэлектронике. Через него происходит управление приборами с минимальными затратами. Преобразует уровни сигнала.
- Irf3205. Пригоден для автомобилей, повышает высокочастотные инверторы. Поддерживает значительный уровень тока.
- KT 815. Биполярен. Имеет структуру NPN. Работает с усилителями низкой частоты. Состоит из пластмассового корпуса. Подходит для импульсных устройств. Используется часто в генераторных схемах. Транзистор сделан давно, по сей день работает. Даже есть шанс, что он находится в обычном доме, где лежат старые приборы, нужно только их разобрать и посмотреть, есть ли там.
Модельный ряд стабилизаторов напряжения «Штиль»
Российский производитель систем электропитания «Штиль» выпускает широкий модельный ряд инверторных стабилизаторов напряжения, среди которых:
- однофазные модели настенного и напольного/стоечного исполнения с выходной мощностью от 0,3 до 18 кВт;
- трехфазные устройства напольного/стоечного исполнения с выходной мощностью от 5,4 до 16 кВт;
- модели с конфигурацией 3 в 1 (три фазы в одну) напольного/стоечного исполнения с выходной мощностью от 5,4 до 16 кВт.
Все устройства работают на основе двойного преобразования энергии, за счет чего достигается:
- мгновенный отклик на любые отклонения сетевого напряжения;
- стабилизация входного сигнала с высокой точностью (±2%) и в расширенном диапазоне (от 90 до 310 В);
- электроснабжение нагрузки напряжением идеальной синусоидальной формы;
- бесперебойное питание оборудования при кратковременных отключениях сети (до 0,2 с).
Кроме того, данные модели имеют электронную защиту от перегрузки, перегрева, КЗ, сетевых аварий и сбоев во время работы. Устройства оснащаются фильтрами, защищающими от высокочастотных помех, и варистором, нейтрализующим импульсные перенапряжения.
Инверторные стабилизаторы «Штиль» имеют бесшумную (конвекционную) или малошумную (конвекционную/вентиляторную или вентиляторную) систему охлаждения, что позволяет их использовать в жилых помещениях.
В зависимости от модели устройства обладают функционалом, который значительно упрощает их эксплуатацию, делая её максимально удобной, например, возможностью удаленного мониторинга через смартфон, ручной настройкой значения выходного напряжения, различными разъемами для одновременного подключения нагрузки, информативным ЖК-дисплеем, на котором отображаются все необходимые параметры системы электропитания.
Зарядное устройство на тиристоре своими руками
Существует множество электронных схем, в том числе и непростых, с полным набором регулировок и защиты, солидным количеством деталей, зачастую недешёвых. Но большинство автолюбителей отдаёт предпочтение простым зарядным устройствам на тиристоре, из нескольких недорогих компонентов, которые зачастую можно извлечь из отработавшей своё аппаратуры, например компьютера.
Выбор схемы и принцип её работы
Сначала стоит отметить главное достоинство предлагаемой схемы тиристорного зарядного устройства: доступность и малые финансовые затраты. Есть и иные преимущества при использовании в качестве главного компонента недорогого тиристора КУ202:
- Хороший зарядный ток до 10 А.
- Выдаваемая энергия – импульсного типа, что продлевает эксплуатационный ресурс заряжаемой батареи.
- Для сборки понадобятся широко распространённые недорогие детали, найти которые не составит труда.
- Схему тиристорного зарядного устройства для автомобильного аккумулятора просто повторить даже автолюбителю, малосведущему в радиотехнике, а опытному электронщику потребуется и вовсе не более часа, чтобы запустить устройство в эксплуатацию.
По принципу действия это фазоимпульсный регулятор мощности, выполненный на тиристоре и позволяющий изменять силу тока. Управляющий электрод КУ202 питает транзисторная цепь. Чтобы защитить схему тиристорного зарядного устройства для автомобильного аккумулятора от токовых скачков, используется диод VD2. Сопротивление R5 оказывает влияние на зарядный ток, значение которого, как известно, 1/1 от ёмкости АКБ. Для питания схемы понадобится трансформатор, уменьшающий сетевое U = 220 В до 18–22 В. Если в вашем распоряжении оказался трансформатор с большим напряжением на выходе, сопротивление R7 нужно увеличить ориентировочно до 2-х кОм (возможно, резистор придётся подбирать). Диоды выпрямительного моста и тиристор необходимо устанавливать на алюминиевые радиаторы, чтобы исключить перегрев деталей. При монтаже обычных элементов типа Д242–245 не забывайте под корпус подложить изоляционную шайбу.
Принципиальная схема тиристорного зарядного устройства для автомобильного аккумулятора выглядит следующим образом:
Так как схема простая, в ней отсутствует электронная защита: её роль играет предохранитель, устанавливаемый на выходе. При зарядке батарей ёмкостью не более 60 А*ч хватит плавкой вставки номиналом 6,3 А. Установка последовательно подсоединяемого прибора – амперметра поможет контролировать процедуру зарядки. Ниже показана печатная плата, упрощающая сборку ЗУ:
Перечень компонентов в схеме и подбор возможных аналогов
В схеме использован электролитический конденсатор, выдерживающий напряжение не менее 63 В. Мощность резисторов R1-R6 – 0,25 Вт, R7 – 2 Вт. Диоды в выпрямительном мосту пропускают ток до10 А и держат обратное U от 50 В. Такое же напряжение должен выдерживать импульсный диод VD2. Транзисторы VT1 и VT2: КТ3107, КТ502, КТ361 и КТ503, КТ315, КТ3102 соответственно.
Расчёт параметров трансформатора, тиристора и диодов
Одна из отрицательных сторон зарядки на тиристоре – низкий КПД, отчасти обусловленный вторичной обмоткой трансформатора, которая должна свободно пропускать ток, в три раза больший, чем потребляемая АКБ мощность. Как это исправить? Для этого можно тиристор переставить из обмотки II трансформатора в обмотку I, как это показано на схеме тиристорного зарядного устройства для АКБ:
Вся разница этого ЗУ на тиристоре для автомобильных аккумуляторов заключается в подключении диодного моста и регулирующего тиристора в первичную обмотку трансформатора. Так как ток обмотки II приблизительно меньше зарядного в 10 раз, то тепловой энергии на диодах и тиристоре выделяется совсем мало: можно даже не использовать охлаждающие радиаторы (но это не относится к VD5-VD8).
Компоненты и их аналоги:
- выпрямительный блок КЦ402,405 с любым индексом (А, Б, В);
- стабилитрон типа КС524, КС518, КС522;
- транзистор КТ117 с буквами от «Б» до «Г»;
- диодный мост, стоящий на выходе, должен состоять из компонентов, рассчитанных на 10 А (Д242-247).
Разновидности приборов
По виду выходного сигнала регуляторы разделяют на стабилизированные и нестабилизированные. Также они могут быть аналоговыми и цифровыми (интегральными). Первые строятся на основе тиристоров или операционных усилителей. Их управление осуществляется путём изменения параметров RC цепочки обратной связи. Совместно с ними для повышения мощности применяются биполярные или полевые транзисторы. Работа же интегральных устройств связана с использованием широтно-импульсной модуляции (ШИМ), поэтому в цифровой схемотехнике используются микроконтроллеры и силовые транзисторы, работающие в ключевом режиме.
При изготовлении самодельного регулятора напряжения могут быть использованы следующие элементы:
- резисторы;
- тиристоры или транзисторы;
- цифровые или аналоговые интегральные микросхемы.
Первые два типа имеют несложные схемы и довольно просты к самостоятельной сборке. Их можно изготавливать без использования печатной платы с помощью навесного монтажа, в то время как импульсные регуляторы на основе микроконтроллеров требуют более обширных знаний в радиоэлектронике и программировании.
Рекомендации по разводке печатной платы
В микросхеме LM5001 компаратор датчика тока и ШИМ-компаратор являются быстродействующими, и потому они способны отреагировать на импульсы помех короткой длительности. Компоненты, подключенные к выводам SW, COMP, EN и RT, должны располагаться как можно ближе к микросхеме, чтобы минимизировать шумы и помехи на дорожках печатной платы.
Вывод SW микросхемы LM5001 должен иметь короткие и широкие силовые проводники, связывающие его с дросселями, трансформаторами и конденсаторами, чтобы минимизировать паразитные индуктивности, уменьшающие КПД и увеличивающие кондуктивные и излучаемые помехи. Рекомендуется устанавливать керамические разделительные конденсаторы между выводами VIN и GND, а также между VCC и GND. Необходимо использовать короткие и прямые соединения, чтобы избежать дрожания тактовых импульсов из-за меняющегося потенциала «земли». Предпочтительнее использовать конденсаторы типа X7R или X5R для поверхностного монтажа, чтобы получить хорошие частотные свойства и ограничить влияние температуры и приложенного напряжения на их параметры.
Если в тех схемах, в которых используется микросхема LM5001, ее выводы сильно нагреваются во время нормальной работы, то несколько сквозных отверстий от вывода GND к слою заземления печатной платы помогут отвести тепло от микросхемы. Разумное размещение печатной платы внутри конечного продукта, а также использование любой возможности обдува воздушным потоком позволяет снизить температуру выводов. При использовании принудительного воздушного охлаждения следует избегать установки микросхемы LM5001 в воздушном потоке за большими компонентами, такими как входные конденсаторы, катушки индуктивности или трансформаторы.
Литература
- Гавриков В. Texas Instruments за рулем: компоненты TI для автомобильных приложений // Новости электроники. 2014. № 7. С. 23–29.
- Звонарев Е., Черемисов П. Рекомендации при проектировании схем защиты цепей питания 12 и 24 В для автомобильных приложений // Новости электроники. 2014. № 8. С. 12-14.
- Серебрянников А. В., Малинин Г. В., Самсонов А.И. Описание и особенности применения микросхемы высоковольтного импульсного регулятора LM5001-Q1 // Инженерный вестник Дона (электронный журнал). № 4 (Т. 31).
- LM5001x High-Voltage Switch-Mode Regulator.
- LM5001-Q1. Automotive Grade 3.1-75V Wide Vin, 1A Current Mode Non-Synchronous Switch Mode Regulator.
- Белов Г. А., Серебрянников А. В., Павлова А. А. К синтезу одноконтурных систем управления понижающими импульсными преобразователями // Практическая силовая электроника
Делаем своё устройство
Первоначально нам нужна схема стабилизатора напряжения на 12 вольт. Её необходимо вытравить и очистить, чтобы можно было применять на практике. Далее следует припаять необходимые детали так, как указано. И как результат – перед вами импульсный стабилизатор напряжения (12 вольт, 1,5 Ампера), который можно использовать в автомобиле, чтобы регулировать подсветку. Для удобства и защиты всё устройство можно разместить в специальный контейнер. Желательно в качестве его материала использовать пластик, который спокойно переносит значительную температуру и обеспечивает герметичность. Токопроводящие металлы следует применять только при наличии изоляторов на проводах и всех частях деталей, которые потенциально могут ударить током.
Вступление.
Я много лет тому назад изготовил подобный регулятор, когда приходилось подрабатывать ремонтом р/а на дому у заказчика. Регулятор оказался настолько удобным, что со временем я изготовил ещё один экземпляр, так как первый образец постоянно обосновался в качестве регулятора оборотов вытяжного вентилятора. https://oldoctober.com/
Кстати, вентилятор этот из серии Know How, так как снабжён воздушным запорным клапаном моей собственной конструкции. Описание конструкции >>> Материал может пригодиться жителям, проживающим на последних этажах многоэтажек и обладающих хорошим обонянием.
Мощность подключаемой нагрузки зависит от применяемого тиристора и условий его охлаждения. Если используется крупный тиристор или симистор типа КУ208Г, то можно смело подключать нагрузку в 200… 300 Ватт. При использовании мелкого тиристора, типа B169D мощность будет ограничена 100 Ваттами.
Регулируемый блок питания своими руками
Блок питания необходимая вещь для каждого радиолюбителя, потому, что для питания электронных самоделок нужен регулируемый источник питания со стабилизированным выходным напряжением от 1.2 до 30 вольт и силой тока до 10А, а также встроенной защитой от короткого замыкания. Схема изображенная на этом рисунке построена из минимального количества доступных и недорогих деталей.
Схема регулируемого блока питания на стабилизаторе LM317 с защитой от КЗ
Микросхема LM317 является регулируемым стабилизатором напряжения со встроенной защитой от короткого замыкания. Стабилизатор напряжения LM317 рассчитан на ток не более 1.5А, поэтому в схему добавлен мощный транзистор MJE13009 способный пропускать через себя реально большой ток до 10А, если верить даташиту максимум 12А. При вращении ручки переменного резистора Р1 на 5К изменяется напряжения на выходе блока питания.
Так же имеется два шунтирующих резистора R1 и R2 сопротивлением 200 Ом, через них микросхема определяет напряжение на выходе и сравнивает с напряжением на входе. Резистор R3 на 10К разряжает конденсатор С1 после отключения блока питания. Схема питается напряжением от 12 до 35 вольт. Сила тока будет зависеть от мощности трансформатора или импульсного источника питания.
А эту схему я нарисовал по просьбе начинающих радиолюбителей, которые собирают схемы навесным монтажом.
Схема регулируемого блока питания с защитой от КЗ на LM317
Сборку желательно выполнять на печатной плате, так будет красиво и аккуратно.
Печатная плата регулируемого блока питания на регуляторе напряжения LM317
Печатная плата сделана под импортные транзисторы, поэтому если надо поставить советский, транзистор придется развернуть и соединить проводами. Транзистор MJE13009 можно заменить на MJE13007 из советских КТ805, КТ808, КТ819 и другие транзисторы структуры n-p-n, все зависит от тока, который вам нужен. Силовые дорожки печатной платы желательно усилить припоем или тонкой медной проволокой. Стабилизатор напряжения LM317 и транзистор надо установить на радиатор с достаточной для охлаждения площадью, хороший вариант это, конечно радиатор от компьютерного процессора.
Желательно прикрутить туда и диодный мост. Не забудьте изолировать LM317 от радиатора пластиковой шайбой и тепло проводящей прокладкой, иначе произойдет большой бум. Диодный мост можно ставить практически любой на ток не менее 10А. Лично я поставил GBJ2510 на 25А с двойным запасом по мощности, будет в два раза холоднее и надёжнее.
А теперь самое интересное… Испытания блока питания на прочность.
Регулятор напряжения я подключил к источнику питания с напряжением 32 вольта и выходным током 10А. Без нагрузки падение напряжения на выходе регулятора всего 3В. Потом подключил две последовательно соединенные галогеновые лампы H4 55 Вт 12В, нити ламп соединил вместе для создания максимальной нагрузки в итоге получилось 220 Вт. Напряжение просело на 7В, номинальное напряжение источника питания было 32В. Сила тока потребляемая четырьмя нитями галогеновых ламп составила 9А.
Радиатор начал быстро нагреваться, через 5 минут температура поднялась до 65С°. Поэтому при снятии больших нагрузок рекомендую поставить вентилятор. Подключить его можно по этой схеме. Диодный мост и конденсатор можно не ставить, а подключить стабилизатор напряжения L7812CV напрямую к конденсатору С1 регулируемого блока питания.
Схема подключения вентилятора к блоку питания
Что будет с блоком питания при коротком замыкании?
При коротком замыкании напряжение на выходе регулятора снижается до 1 вольта, а сила тока равна силе тока источника питания в моем случае 10А. В таком состоянии при хорошем охлаждении блок может находится длительное время, после устранения короткого замыкания напряжение автоматически восстанавливается до заданного переменным резистором Р1 предела. Во время 10 минутных испытаний в режиме короткого замыкания ни одна деталь блока питания не пострадала.
Радиодетали для сборки регулируемого блока питания на LM317
- Стабилизатор напряжения LM317
- Диодный мост GBJ2501, 2502, 2504, 2506, 2508, 2510 и другие аналогичные рассчитанные на ток не менее 10А
- Конденсатор С1 4700mf 50V
- Резисторы R1, R2 200 Ом, R3 10K все резисторы мощностью 0.25 Вт
- Переменный резистор Р1 5К
- Транзистор MJE13007, MJE13009, КТ805, КТ808, КТ819 и другие структуры n-p-n
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о том, как сделать регулируемый блок питания своими руками