Приборы, измеряющие температуру: виды и принцип действия

Большинство технологических процессов корректно проходят только при определенной температуре. Кроме того, измеряемые температурные показатели помогают определять, насколько корректно используется затрачиваемая энергия.

  • Виды термометров по принципу действия Контактные
  • Термометры сопротивления
  • Электронные термопары
  • Манометрические
  • Бесконтактные пирометр
  • Виды термометров по использованию
  • Иными словами, это — та величина, которую нужно постоянно контролировать. Все виды приборов для измерения температуры делятся на контактные и бесконтактные. Также они классифицируются по материалам, принципам и способам действия.

    Приборы, измеряющие температуру: виды и принцип действия

    Какие бывают приборы для измерения температуры

    Одним из значимых физических параметров, которые чаще всего изучаются, наблюдаются и корректируются, будь то повседневная бытовая жизнь человека, производственные циклы или лабораторные исследования, является показатель температуры. В зависимости от свойств, технических особенностей и определяющего механизма работы существует определенная классификация приборов для измерения температуры на отдельные виды: обычные жидкостные устройства или сложные, усовершенствованные электронные и лазерные измерители, которые представляют собой достойную альтернативу ставшему привычным бытовому градуснику. Безусловно, основополагающим и решающим фактором является место применения таких устройств.

    Электрические термометры

    Наиболее распространенными методами измерения температуры являются электрические методы, в которых используются датчики для обнаружения изменений следующих параметров:

    • Резистор
    • Подвижность носителей электрического заряда,
    • Концентрация носителей заряда, вызванная изменениями температуры.

    Указанные датчики температуры обычно классифицируются как:

    • Термоэлектрические датчики, также известные как термопары (генеративные датчики, не требуют питания),
    • Резистивные и твердотельные датчики (пассивные датчики и требуют напряжения питания для электрического измерения температуры).

    В большинстве современных электрических термометров используется резистивный (RTD) или термоэлектрический (TC) датчик. Оба типа датчиков стандартизированы европейскими стандартами.

    Термисторные датчики не имеют нормативного определения, но из-за их низкой доступности и высокой чувствительности в промышленном температурном диапазоне они по-прежнему составляют значительную группу.

    Виды приборов для измерения температуры

    Устройства для проведения необходимых исследований, в том числе прибор для измерения температуры воздуха, отличаются конструктивно, а также принципом работы, который используется для проведения замеров. Достаточно широкое применение у контактных и дистанционных термометров, иначе называемых пирометрами. Кроме того, классификация приборов для измерения температуры группирует:

    • Стеклянные и металлические термометры расширения жидкостные, работающие на свойстве изменения объема тел при разных значениях температуры. Спектр действия их от -190 до +500 °С.
    • Манометрические термометры, использующие зависимость между изменяющейся температурой газообразного вещества, помещенного в замкнутый объем, и давлением. Работают при значениях от -160 до +600 °С.
    • Электрические термометры сопротивления действуют, полагаясь на способность материалов-проводников менять электросопротивление при нагреве и охлаждении. Эффективны при значениях от -200 до +650 °С.
    • Термоэлектрические преобразователи – термопары. Задействуются в диапазоне от 0 до +1800 °С. Эти приборы для измерения температуры используют свойство двух разных металлов и металлосплавов вырабатывать электродвижущую силу при перемене степени нагрева спая.
    • Устройство для определения температуры от +100 до +2500 °С – пирометр излучения (фотоэлектрический, оптический, радиационный). Действие обусловлено тем, что фиксируемый показатель влияет на величину излучаемого телом тепла. Относится к бесконтактному типу измерений. Различают стационарные и мобильные, низко- и высокотемпературные пирометры.

    Виды термометров по используемым материалам

    Здесь различают 7 категорий:

    1. Логгер температуры, влажности, CO2 и атмосферного давления — U4440

    2. Газовые. Принцип действия — тот же, что и у жидкостных, но в качестве заполнителя для колбы выбирается инертный газ. Это позволяет существенно увеличить температурный диапазон измерения (если для жидкостных предел — +600 градусов, то для газовых — +1000 градусов). С их помощью можно измерять температуру в различных раскаленных жидких средах.
    3. Механические. В основе действия — принцип деформации металлической спирали. Часто эти термометры комплектуются стрелочным “дисплеем”. Устанавливаются в спецтехнике, автомобилях, на автоматизированных линиях. Нечувствительны к ударам.
    4. Электрические. Работают, измеряя уровень сопротивления проводника при разных температурных показателях. В качестве проводника могут использоваться разные металлы (например, медь или платина). Соответственно, и диапазон измерений таких устройств будет отличаться. Чаще всего такие модели применяются в лабораторных условиях.
    5. Термоэлектрические. В конструкции предусмотрено два проводника, проводящие замеры по физическому принципу на основе эффекта Зеебека. Эти устройства очень точные, работают с погрешностью до 0,01 градуса и подходят для высокоточных измерений в производственных процессах, когда рабочая температура превышает 1000 градусов.
    6. Волоконно-оптические. Чувствительные датчики из оптоволокна (оно натягивается и сжимается или растягивается при изменении температуры, а прибор фиксирует степень преломления проходящего луча света). Допустимый диапазон измерений — до +400 градусов, а погрешность — не более 0,1 градуса.
    7. Инфракрасные. Непосредственный контакт с измеряемым веществом не требуется: прибор генерирует инфракрасный луч, который направляется на изучаемую поверхность. Это современный вид бесконтактных термометров, которые работают с точностью до нескольких градусов и подходят для высокотемпературных измерений. С их помощью можно измерять даже температуру открытого пламени.

    предлагает как разные виды термометров, так и комбинированные устройства, в том числе манометры-термометры или гигрометры-термометры для автономной работы с энергонезависимой памятью, обеспечивающей постоянную фиксацию результатов измерений.

    Термометры и датчики

    По иной классификации термофиксирующих устройств проводится их разделение на термометры и термодатчики.

    Первые – это механические приборы, в том числе газонаполненные манометрические устройства, биметаллические, стеклянные измерители температуры и комбинированные регуляторы.

    Термодатчики – это сверхточные усовершенствованные электронные приспособления для фиксирования показателей температуры в жидкостях и твердых телах. К ним следует относить термометры сопротивления, термопары, преобразователи показаний датчиков и сигнализаторы, оснащенные релейными механизмами.

    Новейшие термодетекторы оснащены USB-интерфейсом, памятью для сохранения и анализа исследований, лазерным наводчиком-целеуказателем.

    Полупроводниковый термометр

    В конструкции присутствует три датчика, которые измеряют температуру в разных средах. Возможно и другое строение – 1 датчик с тремя сменными насадками.

    Жидкостные термометры

    Стеклянные жидкостные измерители известны как самые элементарные и точные термометры, которые выпускаются прямыми и угловыми. А сфера их применения – анализ технологического оборудования, а также коммунальное хозяйство (замеры в трубопроводах). Приборы подходят для значений от -35 до +600 °С, причем в качестве чувствительного элемента чаще других применяют ртуть, а показания записывают по шкале.

    В зависимости от места применения и особенностей строения различают устройства медицинские, технические, электроконтактные, жидкостные, палочные и прочие.

    Конкретный прибор для измерения температуры воды выбирается с учетом допустимой погрешности при замерах.

    История создания термометра

    Считается, что первым человеком, который изготовил термометр, был итальянский физик эпохи Возрождения — Галилео Галилей. Хотя прямых доказательств этого нет. Однако об этом свидетельствовали последователи ученого, которые даже назвали год этого изобретения — 1597. Название у прародителя термометра было «термобароскоп» или «термоскоп».

    Идея создания термоскопа пришла Галилею после изучения трудов греческого математика, жившего в I в.н.э, Герона Александрийского. Изначальным замыслом не предусматривалось измерение температуры. Устройство использовалось, чтобы демонстрировать подъем воды в зависимости от нагревания воздуха.

    Термоскоп изготавливался из стеклянной трубки, полой, с одной стороны, и с припаянным шариком, с другой. Работало устройство следующим образом:

    1. Шарик нагревали и конец трубки опускали в воду.
    2. По мере того, как воздух в шарике начинал остывать и сжиматься, вода поднималась вверх по трубке.
    3. При повышении температуры воздуха уровень воды в трубке снова понижался.

    Измерить термоскопом температуру было невозможно. Он не был градуирован, да и уровень подъема воды зависел не только от степени нагрева воздуха, но и от окружающего давления. Почти через 60 лет после смерти Галилея (в 1657 году) его термоскоп усовершенствовали ученые из Флоренции.

    Термоскопу добавили шкалу-бусины и герметично запаяли трубку, удалив из нее воздух, залив внутрь спирт и перевернув. До того, как стали использовать винный спирт, трубки лопались при замерзании воды. То, что именно спирт позволит сохранить целостность колбы при отрицательных температурах, предположил Фердинанд II — тосканский герцог. С 1654 года мастера стали заливать в термоскопы алкоголь.

    Сосуд стал не нужен для работы прибора, поэтому от него избавились. В зависимости от температуры воздуха, бусины поднимались или опускались. А в качестве исходных точек для измерения использовали отметки, сделанные в самый жаркий и самый холодный дни года.

    Наряду с Галилеем, первенство в создании устройств, которые фиксировали изменения температуры окружающего воздуха приписывают:

    • лорду Бэкону;
    • Санториусу;
    • Роберту Фладду;
    • Скарпи;
    • Саломону де Коссу;
    • Порте;
    • Корнелиусу Дреббелю.

    Хотя де Косс был лично знаком с Галилеем, поэтому мог увидеть его изобретение. Устройства других исследователей тоже были созданы по принципу термоскопа и зависели от температуры, так же, как и от атмосферного давления.

    Впервые жидкостный термометр был описан флорентийцами в 1667 году. Сохранилось описание процедуры изготовления стеклянных колб стеклодувами. Этих мастеров называли «Confia». Несколько экземпляров флорентийских термометров можно и сегодня увидеть в музее Галилея. Эти устройства довольно большие по своим размерам и не отличаются точностью показаний. Хотя самые опытные мастера уже тогда умели так наносить шкалу градусов, что их термоскопы показывали одинаковую температуру. Измерить ими, что то еще, кроме температуры воздуха, было невозможно.

    Следующим ученым, внесшим вклад в эволюцию термометра, стал французский ученый Гийом Амонтон, живший в 1663–1705 гг. Он стал измерять степень увеличения упругости воздуха, а не его расширение. Свои опыты Амонтон проводил, используя открытую трубу, изогнутую к нижней части и переходящую в замкнутую круглую полость. Подливая в трубку ртуть, ученый фиксировал изменения объема воздуха в зависимости от температуры.

    Амонтон избрал для двух постоянных точек температуру современного абсолютного нуля, когда воздух полностью теряет упругость, и температуру кипения воды. Из-за того, что состояние ртути и воздуха в устройстве зависело от атмосферного давления, о чем Амонтон не знал, его «абсолютный нуль», наступал при температуре -239.5 °С, а не при минус 273.15 °С.

    Второй термометр Амонтона был герметичен и независим от окружающего давления. Его устройство включало в себя коленчатую трубку с раствором углекислого калия и нефтью, которая заканчивалась резервуаром с воздухом. Но этому сифонному барометру было еще очень далеко до совершенства современных термометров.

    Тем, как выглядит современный термометр мы обязаны германскому ученому 18 века Габриэлю Фаренгейту. Начав с заполнения трубок спиртом, позднее он стал заполнять их ртутью. Фаренгейт установил ноль своей шкалы на отметке температуры смеси поваренной соли или нашатыря со снегом. Сделав градуирование, Фаренгейт установил, что вода начинает кипеть при 212⁰, а замерзает при 32⁰. Температура человеческого тела, при помещении термометра под мышку, составила 96⁰.

    Метеоролог из Швеции Андерс Цельсий поставил точки кипения воды и таяния льда совсем не так, как это выглядит на современных градусниках. По его шкале вода закипала при 0⁰, тогда как лед начинал таять при 100⁰. Последователям оставалось лишь перевернуть шкалу, чтобы она приняла сегодняшний вид. Сделали это шведские ученые Карл Линней и Мортен Штремер. Кроме изобретения своей шкалы, Цельсий предсказал, что температура кипения воды может отличаться в зависимости от расположения местности относительно уровня моря. Зная этот уровень предполагалось проводить калибровку измерительных приборов.

    Бытует мнение, что шкала должна называться именем Штремера и носит имя Цельсия из-за ошибки, допущенной химиком Иоганном Якобом в своей научной работе.

    Еще одним человеком, оставившим след в истории создания измеряющего температуру устройства, является француз Рене Антуан Реомюр. Его работы стали причиной появления шкалы, градуированной в 80⁰. Несмотря на большой вклад в науку, прибор Реомюра не получил распространения и стал своеобразным шагом назад по сравнению с устройствами Фаренгейта. Фаренгейт и Реомюр стали последними, кто самостоятельно изготавливали свои термометры. После них этим стали заниматься ремесленники, зарабатывавшие на продажах устройств измерения температуры.

    То, что можно создать шкалу, начальная точка которой не зависит от свойств материалов, используемых в термометре, было доказано в середине 19-го века. Это сделал английский лорд и физик Кельвин. Именно по «шкале Кельвина» таким началом служит абсолютный нуль, равный -273.15 ⁰С. Именно при такой температуре молекулы прекращают свое тепловое движение и охладить вещество еще больше становится невозможно.

    Приспособления для определения температуры воздуха

    Первый прибор для измерения температуры воздуха – это стеклянный термометр, активным жидким элементом в котором могут быть ртуть, спирт этиловый, толуол и другие вещества.

    Высокоточные измерители ртутные бывают палочными и с вложенной стеклянной шкалой. Они востребованы в лабораторных исследованиях в различных областях производства и медицины. Палочный термометр оснащен прозрачной термостойкой градуированной капиллярной трубочкой, а второй вид измерителей характеризуется тем, что деления шкалы расположены позади нее на отдельной пластине, а весь механизм защищен футляром из прочного стекла.

    При наличии в приборе электроконтактов его называют термосигнализатором, а чувствительная жидкость внутри резервуара и капилляра показывает настоящую температуру окружающего пространства.

    Термогигрометры и психрометры

    — это просто «термометр + гигрометр» (измеритель относительной влажности воздуха) в одном приборе.

    Как работает термометр уже описано выше — разницы никакой в данном случае нет, а вот гигрометр фиксирует относительную влажность.

    Единственное, что важно помнить, что и бытовые гигрометры (что цифровые, что «аналоговые») идут с погрешностью ± 2-5% в оценке относительной влажности. И для бытовых целей часто более, чем достаточно. Точные данные по влажности даст только психрометр — о нём чуть ниже.

    Чем вам пригодится гигрометр, а точнее знание относительной влажности воздуха:

    Для начала обратимся к нормам и СНИПам нормальным показателем относительной влажности в помещении считается от 45% до 60%

    Особенности терморегуляторов и сигнализаторов

    Кроме вышеперечисленных, существуют и другие приборы для измерения температуры. К примеру, в качестве терморегуляторов и сигнализаторов используют стержневые дилатометры с чувствительными деталями из разнородных металлосплавов, которые удлиняются при нагреве на различную величину.

    Тем же принципом характеризуется еще один вид термометра – биметаллический, со вставленной термочувствительной пружиной, спаянной с парой металлических пластинок с различным температурным расширением. В процессе нагрева пружина выгибается к пластине меньшего термокоэффициента, а по величине изгиба находят искомый показатель температуры.

    Оптические термометры

    К датчикам температуры также относятся датчики, использующие оптические явления. Наиболее распространенные конструкции термометров основаны на световодах и преобразователях пирометров.

    Из непрямых используются полупроводниковый GaAS, термохром, фотолюминесценция и другие специальные измерительные датчики, установленные на конце оптического кабеля, а затем сигнал с датчика передается на оптоэлектронный преобразователь по оптическому кабелю.

    В случае оптических датчиков прямого действия сам оптический кабель также является чувствительным элементом. Используя явление светорассеяния, изменение показателя преломления или сопряжение двух световодов может быть выражено как средняя температура световода или даже как распределение температуры внутри данного участка световода.

    Благодаря своим особым свойствам фотопроводящие датчики используются в качестве термометров в очень особых случаях.

    Устойчив к химическим и механическим воздействиям, нечувствителен к электрическим и магнитным полям, а также к электромагнитным помехам. Их потенциальный диапазон измерения может составлять от -200 C до 2000 C, они обладают хорошими динамическими свойствами и хорошей способностью передачи сигнала на большие расстояния.

    Электротермометр

    Для дистанционного фиксирования тепловых показателей окружающей среды в диапазоне от -15 до +125 °С отлично подходит бесконтактный прибор для измерения температуры — аспирационный электротермометр. В его устройство входят соединенные между собой шнуром измеритель и датчик.

    Чувствительным элементом является тончайшая медная проволока датчика, накрученная спиралью на нитевой каркас.

    Датчики температуры в термисторе

    Варианты терморезисторов, изготовленные из материалов с высоким температурным коэффициентом методом спекания. Мы различаем датчики NTC с отрицательным температурным фактором, для которых повышение температуры снижает сопротивление датчика, и термисторы типа PTC с положительным температурным фактором.

    Термисторы характеризуются высокой чувствительностью в диапазоне 50 C ÷ 125 C, но в более широком диапазоне их термометрические характеристики определенно нелинейны, что затрудняет преобразование изменения сопротивления в температуру и, следовательно, снижает точность измерения. Цепи питания и измерения такие же, как для платиновых датчиков RTD.

    Какие существуют устройства для измерения температуры тела

    Температуру тела привычно измеряют градусником. Но на сегодняшний день существует множество других термометров, отличающихся по внешнему виду и основным принципам действия.

    Самые распространенные приспособления, к которым принадлежит наш градусник, работают на температурном расширении ртути, керосина, спирта и др. жидкостей. Они недорогие, практичные и достаточно точные, особенно ртутные, хотя ядовитое содержимое в хрупком стеклянном корпусе несет с собой некоторый риск.

    Электронный или цифровой прибор для измерения температуры тела показывает нужную величину благодаря встроенному датчику, но его стоимость много больше цены жидкостных «собратьев». Эти термометры контактные.

    Инфракрасные пирометры не требуют прямого прикосновения к человеку, действуя дистанционно. Сверхчувствительный датчик за 2-15 секунд считывает величину излучения, выводя результат на дисплей. Эти бесконтактные приборы для измерения температуры превосходно подходят для семей с маленькими детьми, ситуаций со спящими больными и др. Кроме того, они применимы в быту в процессе приготовления пищи, а более мощные виды – в электроэнергетике, на стройплощадках, в металлургии и других отраслях промышленности.

    Превышение влажности или слишком сухой воздух — чем опасно?

    • при превышении 60-70% в помещении могут развиваться плесень, грибки и следующие за ней простудные заболевания, аллергии и пр. А за ними и бронхиальная астма и туберкулёз. Особенно это важно для здоровья ребенка, и еще более важно для детей грудничкового возраста.
    • при показателях менее 30% может негативно отразиться на состоянии кожи, глаз. Пересушенная из-за этого носоглотка и ротовая полость — причина возникновения заболеваний верхних дыхательных путей или активизация хронических (бронхиты, астмы, фарингиты).

    Совет: Как сделать воздух более влажным?

    Самый простой, но не всегда возможный — мокрое полотенце на разогретую радиаторную батарею. Но лучше для этого использовать специальные увлажнители воздуха

    Когда необходим дистанционный пирометр

    Часто бывают ситуации, когда замерять температуру контактным способом невозможно или просто неудобно. Именно в таких случаях понадобится пирометр — прибор для дистанционного измерения температуры, а именно:

    • при замерах показателей сильно разогретых тел или ядовитой среды;
    • при затрудненном доступе, причем с небольшой погрешностью можно произвести измерения на расстоянии в десятки метров;
    • при наблюдении за механизмами, находящимися в движении, причем на это потребуются доли секунды;
    • при диагностике электробезопасности здания, когда именно таким измерителем удобно провести дистанционное сканирование на многочисленных удаленных участках.

    Резистивные датчики RTD

    Наиболее часто используемый тензорезистивный материал — платина (Pt), но существуют также терморезисторы из никеля (Ni) или меди (Cu).

    • Нормативные датчики доступны как Pt100, Pt500 или Pt1000, что означает, что их номинальное сопротивление при 0 C составляет 100 Ом, 500 Ом или 1000 Ом соответственно.
    • Учитывая, что датчики RTD считаются наиболее точными, их точность измерений стандартизирована, и A соответственно.
    • Они классифицируются по классу точности B. На практике можно встретить и другие классы точности, а именно: AA, C, 1⁄3B или 1 / 10B

    Какими устройствами можно измерить температуру металла

    В металлургической промышленности для исследования расплавленных металлосплавов необходим прочный прибор для измерения высоких температур.

    Таковыми считаются уже описанные ранее пирометры. Они фиксируют на расстоянии тепловое излучение, характеризующее фактическую температуру металла. В сложных условиях сверхвысоких показателей тепла бесконтактный способ идеален. На жидкокристаллический дисплей выводятся следующие данные:

    • фактическая температура по Фаренгейту и Цельсию;
    • пограничные температуры;
    • заряд батареи.

    Максимальной точности измеряемой переменной можно добиться только тогда, когда между объектом и дистанционным прибором нет помех в виде поглощающих тепло паров или твердых тел. Если же нужно сделать замеры металлосплава в транспортировочном ковше или при розливе, то следует принять условие, что температурный показатель окажется меньше фактического и будет определяться расчетами.

    Для того чтобы избежать неточности такого способа, применяется другой прибор для измерения температуры металла, а именно имитатор черного тела. Он погружается в расплав и представлен в виде трубы с запаянным или открытым концом, полого конуса или стакана из тугоплавкого металла. В любом варианте термоизмеритель должен обладать повышенной жаропрочностью, химической стойкостью и отличной теплопроводностью, чтобы демонстрировать исключительно точные данные.

    Применение термометров в промышленности и лабораториях

    В промышленных отраслях, таких как металлургия, целлюлозно-бумажное производство, земледелие, фармацевтика, животноводство, термометры необходимы для измерения температуры:

    • жидкостей;
    • растворов;
    • газов;
    • твердых тел;
    • поверхностей;
    • сыпучих материалов;
    • расплавов и т. д.

    Профессиональные термометры особенно востребованы на производствах, где необходим контроль температуры сырья, технологического процесса или оценка свойств готовой продукции. К таким объектам относятся предприятия по изготовлению продуктов питания, химические и металлургические заводы, сельскохозяйственные организации и т. д. Контролировать технологические процессы также необходимо и в условиях лабораторных испытаний. Термометры находят применение в лабораториях контроля качества, эколого-аналитических центрах, технологических отделениях предприятий.

    В каждой сфере деятельности востребованы определенные типы термометров. Эти измерители различаются по принципу действия и сфере применения.

    Измерение температуры двигателя

    Длительная эксплуатация, а также периодический ремонт машин и механизмов предполагают наличие специального оборудования, в составе которого — прибор для измерения температуры двигателя. К ним относят термопары, терморезисторы и термометры расширения.

    Термопары – очень удобные и широко известные среди автомобилистов приборы для измерения температуры поверхностей, обмотки и внутренней полости двигателя. С помощью этих термодатчиков можно фиксировать данные даже в труднодоступных участках двигателя, в пазах и сердечниках. Представляют собой две изолированных проволоки разного металла со спаянными с одной стороны концами, которые помещаются в определенную точку измерения. Вторые концы соединяются с милливольтметром и термометром, а сумма их показателей определяет фактическое значение температуры.

    Ртутные и спиртовые термометры расширения весьма удобны для проведения необходимых измерений на доступных участках: обмотке, открытой поверхности различных деталей, а также выходящего (или входящего) из движка потока воздуха. Терморезисторы в виде медной проволочной обмотки крепят одновременно в нескольких местах двигателя, поочередно включая их, снимая фиксируемые показания и определяя среднее значение.

    Кухонные термометры

    Это отдельная категория термометров для измерения или температуры мяса (или любого другого продукта), или для замера температуры духовки, или и для того и другого.

    Для «термощупа», а именно так чаще всего предпочитают называть такие термометры, технологий проста — биметаллический элемент, который и является индикатором температуры. На некоторых моделях есть обозначенные виды приготавливаемого мяса: курица, свинья, корова, что часто облегчает понимание положенной температуры, какое мясо и когда будет готово:

    Рейтинг
    ( 1 оценка, среднее 5 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]