Брусок кристаллического титана
Титан
– лёгкий прочный металл серебристо-белого цвета. Существует в двух кристаллических модификациях: α-Ti с гексагональной плотноупакованной решёткой, β-Ti с кубической объёмно-центрированной упаковкой, температура полиморфного превращения α↔β 883 °C.Титан и титановые сплавы сочетают легкость, прочность, высокую коррозийную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.
- Структура
- Свойства
- Запасы и добыча
- Происхождение
- Применение
- Классификация
- Физические свойства
- Оптические свойства
- Кристаллографические свойства
Смотрите так же:
Хром
– структура и физические свойства
СТРУКТУРА
Кристаллическая структура кристалла
Титан имеет две аллотропические модификации. Низкотемпературная модификация, существующая до 882 °C, имеет гексагональную плотноупакованную решетку с периодами а = 0,296 нм и с = 0,472 нм. Высокотемпературная модификация имеет решетку объемноцентрированного куба с периодом а = 0,332 нм. Полиморфное превращение (882 °C) при медленном охлаждении происходит по нормальному механизму с образованием равноосных зерен, а при быстром охлаждении – по мартенситному механизму с образованием игольчатой структуры. Титан обладает высокой коррозионной и химической стойкостью благодаря защитной окисной пленке на его поверхности. Он не корродирует в пресной и морской воде, минеральных кислотах, царской водке и др.
История открытия
Явление нового элемента связано с именами Грегора и Клапрота. Оба выделили его практически одновременно 1791 и 1795 гг. соответственно.
Мартин Генрих Клапрот
В 1805 г. был выделен вновь Вокленом из анатаза. При этом чистый титан был получен в Голландии более чем через век после выделения.
СВОЙСТВА
Кристаллы титана
Точка плавления 1671 °C, точка кипения 3260 °C, плотность α-Ti и β-Ti соответственно равна 4,505 (20 °C) и 4,32 (900 °C) г/см³, атомная плотность 5,71×1022 ат/см³. Пластичен, сваривается в инертной атмосфере. Применяемый в промышленности технический титан содержит примеси кислорода, азота, железа, кремния и углерода, повышающие его прочность, снижающие пластичность и влияющие на температуру полиморфного превращения, которое происходит в интервале 865-920 °С. Для технического Титана марок ВТ1-00 и ВТ1-0 плотность около 4,32 г/см3, предел прочности 300-550 Мн/м2 (30-55кгс/мм2), относительное удлинение не ниже 25%, твердость по Бринеллю 1150-1650 Мн/м2 (115-165 кгс/мм2). Является парамагнетиком. Конфигурация внешней электронной оболочки атома Ti 3d24s2.
Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок.
При обычной температуре покрывается защитной пассивирующей пленкой оксида TiO2, благодаря этому коррозионностоек в большинстве сред (кроме щелочной). Титановая пыль имеет свойство взрываться. Температура вспышки 400 °C.
Крупные месторождения
Лидирующее место занимает Китай, далее следует Российская Федерация, Северная Америка (Канада). Самое крупное месторождение, где добывают титан в РФ, расположено на территории республики Коми и называется Ярегское нефтяное месторождение.
В десятку стран лидеров по добыче титана входят:
- США;
- Индия;
- Австралия;
- ЮАР;
- Швеция;
- Норвегия;
- Южная Корея.
ЗАПАСЫ И ДОБЫЧА
Кристаллы титана
Основные руды: ильменит (FeTiO3), рутил (TiO2), титанит (CaTiSiO5).
На 2002 год, 90 % добываемого титана использовалось на производство диоксида титана TiO2. Мировое производство диоксида титана составляло 4,5 млн т. в год. Подтвержденные запасы диоксида титана (без России) составляют около 800 млн т. На 2006 год, по оценке Геологической службы США, в пересчёте на диоксид титана и без учёта России, запасы ильменитовых руд составляют 603—673 млн т., а рутиловых — 49.7—52.7 млн т. Таким образом, при нынешних темпах добычи мировых разведанных запасов титана (без учёта России) хватит более чем на 150 лет.
Россия обладает вторыми в мире, после Китая, запасами титана. Минерально-сырьевую базу титана России составляют 20 месторождений (из них 11 коренных и 9 россыпных), достаточно равномерно рассредоточенных по территории страны. Самое крупное из разведанных месторождений находится в 25 км от города Ухта (Республика Коми). Запасы месторождения оцениваются в 2 миллиарда тонн.
Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки — порошок диоксида титана TiO2. Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана их при 850 °C восстанавливают магнием.
Полученную титановую «губку» переплавляют и очищают. Ильменитовые концентраты восстанавливают в электродуговых печах с последующим хлорированием возникающих титановых шлаков.
Получение
Брусок кристаллического титана (чистота 99,995 %, вес ≈283 г, длина ≈14 см, диаметр ≈25 мм), изготовленный на иодидным методом ван Аркеля и де Бура
Как правило, исходным материалом для производства титана и его соединений служит диоксид титана со сравнительно небольшим количеством примесей. В частности, это может быть рутиловый концентрат, получаемый при обогащении титановых руд. Однако запасы рутила в мире весьма ограничены, и чаще применяют так называемый синтетический рутил или титановый шлак, получаемые при переработке ильменитовых концентратов. Для получения титанового шлака ильменитовый концентрат восстанавливают в электродуговой печи, при этом железо отделяется в металлическую фазу (чугун), а невосстановленные оксиды титана и примесей образуют шлаковую фазу. Богатый шлак перерабатывают хлоридным или сернокислотным способом.
Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки — порошок диоксида титана TiO2. Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана TiCl4:
TiO2 + 2C + 2Cl2 → TiCl4 + 2CO
Образующиеся пары TiCl4 при 850 °C восстанавливают магнием:
TiCl4 + 2Mg → 2MgCl2 + Ti
Кроме этого, в настоящее время начинает получать популярность так называемый процесс FFC Cambridge, названный по именам его разработчиков Дерека Фрэя, Тома Фартинга и Джорджа Чена из Кембриджского университета, где он был создан. Этот электрохимический процесс позволяет осуществлять прямое непрерывное восстановление титана из оксида в расплаве смеси хлорида кальция и негашёной извести (оксида кальция). В этом процессе используется электролитическая ванна, наполненная смесью хлорида кальция и извести, с графитовым расходуемым (либо нейтральным) анодом и катодом, изготовленным из подлежащего восстановлению оксида. При пропускании через ванну тока температура быстро достигает ~1000—1100 °C, и расплав оксида кальция разлагается на аноде на кислород и металлический кальций:
2CaO → 2Ca + O2
Полученный кислород окисляет анод (в случае использования графита), а кальций мигрирует в расплаве к катоду, где и восстанавливает титан из его оксида:
O2 + C → CO2 TiO2 + 2Ca → Ti + 2CaO
Образующийся оксид кальция вновь диссоциирует на кислород и металлический кальций, и процесс повторяется вплоть до полного преобразования катода в титановую губку либо исчерпания оксида кальция. Хлорид кальция в данном процессе используется как электролит для придания электропроводности расплаву и подвижности активным ионам кальция и кислорода. При использовании инертного анода (например, диоксида олова), вместо углекислого газа на аноде выделяется молекулярный кислород, что меньше загрязняет окружающую среду, однако процесс в таком случае становится менее стабильным, и, кроме того, в некоторых условиях более энергетически выгодным становится разложение хлорида, а не оксида кальция, что приводит к высвобождению молекулярного хлора.
Полученную титановую «губку» переплавляют и очищают. Рафинируют титан йодидным способом или электролизом, выделяя Ti из TiCl4. Для получения титановых слитков применяют дуговую, электронно-лучевую или плазменную переработку.
ПРОИСХОЖДЕНИЕ
Титановая руда
Титан находится на 10-м месте по распространённости в природе. Содержание в земной коре — 0,57 % по массе, в морской воде — 0,001 мг/л. В ультраосновных породах 300 г/т, в основных — 9 кг/т, в кислых 2,3 кг/т, в глинах и сланцах 4,5 кг/т. В земной коре титан почти всегда четырёхвалентен и присутствует только в кислородных соединениях. В свободном виде не встречается. Титан в условиях выветривания и осаждения имеет геохимическое сродство с Al2O3. Он концентрируется в бокситах коры выветривания и в морских глинистых осадках. Перенос титана осуществляется в виде механических обломков минералов и в виде коллоидов. До 30 % TiO2 по весу накапливается в некоторых глинах. Минералы титана устойчивы к выветриванию и образуют крупные концентрации в россыпях. Известно более 100 минералов, содержащих титан. Важнейшие из них: рутил TiO2, ильменит FeTiO3, титаномагнетит FeTiO3 + Fe3O4, перовскит CaTiO3, титанит CaTiSiO5. Различают коренные руды титана — ильменит-титаномагнетитовые и россыпные — рутил-ильменит-цирконовые. Месторождения титана находятся на территории ЮАР, России, Украины, Китая, Японии, Австралии, Индии, Цейлона, Бразилии, Южной Кореи, Казахстана. В странах СНГ ведущее место по разведанным запасам титановых руд занимает РФ (58.5%) и Украина (40.2%).
Нахождение в природе
В природе титан представлен в виде соединений с кислородом. Чистые формы не встречаются.
Под влиянием метеорологических условий по строению приближается к корунду (соединению алюминия с кислородом). Его обнаруживают в морской глине, в алюминиевых рудах с железом и кремнием.
Титан представлен в минералах: титанит, титаномагнетит, рутил. Известны австралийские, бразильские, канадские месторождения последнего. Минерал представлен в виде букрита и анатаза.
Широко встречаемым минералом служит титанат железа (ильменит). Крупные месторождения представлены в России, Северной Америке.
ПРИМЕНЕНИЕ
Изделия из титана
Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Титан легок по сравнению с другими металлами, но в то же время может работать при высоких температурах. Из титановых сплавов изготовляют обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессора, детали воздухозаборника и направляющего аппарата, крепеж.
Также титан и его сплавы используют в ракетостроении. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести.
Технический титан из-за недостаточно высокой теплопрочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении. Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т.п. Только титан обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Из титана делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей). В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На титан и его сплавы не налипают ракушки, которые резко повышают сопротивление судна при его движении.
Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и дефицитностью титана.
Титан (англ. Titanium) – Ti
Молекулярный вес | 47.88 г/моль |
Происхождение названия | Минерал получил своё название в честь титанов, персонажей древнегреческой мифологии, детей Геи. |
IMA статус | подтвержден в 2010 году |
Физико-химические характеристики
Свойства металла хорошо изучены:
- Легко реагирует с кислотами даже малой концентрации.
- Это тугоплавкий металл: температура плавления – 1670°C. Для вскипания требуется вдвое больше.
- Пластичен, хрупкость обретает на морозе (-80°C).
- На прочность влияет степень очистки, но не температура.
- При комнатной температуре покрывается оксидной пленкой, что делает его устойчивым к коррозии (исключая щелочи).
- При обычном давлении существует два вида титана с разными типами решеток: высоко- и низкотемпературный.
Легкость, почти невесомость – главное свойство, по которому титан легко отличить от других металлов.
Свойства атома | |
Название, символ, номер | Тита́н / Titanium (Ti), 22 |
Атомная масса (молярная масса) | 47,867(1) а. е. м. (г/моль) |
Электронная конфигурация | [Ar] 3d2 4s2 |
Радиус атома | 147 пм |
Химические свойства | |
Ковалентный радиус | 132 пм |
Радиус иона | (+4e)68 (+2e)94 пм |
Электроотрицательность | 1,54 (шкала Полинга) |
Электродный потенциал | −1,63 |
Степени окисления | 2, 3, 4 |
Энергия ионизации (первый электрон) | 657,8 (6,8281) кДж/моль (эВ) |
Термодинамические свойства простого вещества | |
Плотность (при н. у.) | 4,54 г/см³ |
Температура плавления | 1670 °C 1943 K |
Температура кипения | 3560 K |
Уд. теплота плавления | 18,8 кДж/моль |
Уд. теплота испарения | 422,6 кДж/моль |
Молярная теплоёмкость | 25,1 Дж/(K·моль) |
Молярный объём | 10,6 см³/моль |
Кристаллическая решётка простого вещества | |
Структура решётки | гексагональная плотноупакованная (α-Ti) |
Параметры решётки | a=2,951 с=4,697 (α-Ti) |
Отношение c/a | 1,587 |
Температура Дебая | 380 K |
Прочие характеристики | |
Теплопроводность | (300 K) 21,9 Вт/(м·К) |
Номер CAS | 7440-32-6 |
Из-за повышенной вязкости механическая обработка металла затруднена. Этот недостаток устраняют, смазывая инструмент специальными составами.
ФИЗИЧЕСКИЕ СВОЙСТВА
Цвет минерала | Серебристо-серый |
Цвет черты | серовато черный |
Прозрачность | непрозрачный |
Блеск | металлический |
Спайность | нет |
Твердость (шкала Мооса) | 4 |
Излом | в зазубринах |
Прочность | податливый |
Плотность (измеренная) | 4.503 г/см3 |
Радиоактивность (GRapi) | 0 |
Магнетизм | парамагнетик |
Марки и сплавы
Номенклатура титановых сплавов насчитывает десятки позиций.
Самый востребованный – с алюминием и ванадием, 6% и 4% соответственно. На его производство тратится половина добываемого сырья.
Второй по популярности – ферротитан (соотношение титан-железо – 1:3). В черной металлургии это средство для очистки стали от примесей.
Чаще всего выплавляются следующие марки титана:
- ВТ1-0;
- ВТ1-00;
- ВТ1-00 св.
Это технический материал, без легирующих присадок. В нем минимум примесей: содержание Ti (%) – 99,24+.
Пластичные сплавы со средней прочностью
Марка сплава | Процент легирующих добавок | Предел прочности кгс/мм2 | Рабочая температура |
АТ-2 | 2,5 Zr, 1,5 Mo | 50 — 80 | 200 — 300 |
ОТ4−1 | 1−2,5 Al, 0,7−2 Mn | 50 — 80 | 200 — 300 |
ОТ4 | 3,5−5 Al, 0,8−2 Mn | 50 — 80 | 200 — 300 |
АТ-3 | 3 Al, 1,5%(Cr+Fe+Si+B) | 50 — 80 | 200 — 300 |
ВТ5−1 | 4−6 Al, 2−3 Sn | 50 — 80 | 200 — 300 |
Конструкционные сплавы с повышенной прочностью
Марка сплава | Процент легирующих добавок | Предел прочности кгс/мм2 | Рабочая температура |
ВТ-4 | 3,5−4,5 Al, 0,8−2 Mn | 80 — 100 | 300 — 450 |
ОТ4−2 | 5,5−7 Al, 0,2−1,8 Mn | 80 — 100 | 300 — 450 |
ВТ5 | 4,3−6,2 Al | 80 — 100 | 300 — 450 |
ВТ-6 | 5,5−7 Al, 4,2−6 V | 80 — 100 | 300 — 450 |
ВТ-6с | 5−6,5 Al, 5,5−4,5 V | 80 — 100 | 300 — 450 |
ВТ-20 | 5,5−7,5 Al, 1,-2,5 Zr, 0,5−2 Mo, 0,8−1,8 V | 80 — 100 | 300 — 450 |
АТ-4 | 4,5 Al, 1,5%(Cr+Fe+Si+B) | 80 — 100 | 300 — 450 |
АТ-6 | 6 Al, 1,5 (Cr+Fe+Si+B) | 80 — 100 | 300 — 450 |
Мифы о титане
Несколько мифов о титане
Отвечаю на самые распространённные высказывания-заблуждения относительно титата и изделий из него.
1. Титан — самый прочный и твердый материал. Ничего подобного, самый прочный и твердый материал в мире — алмаз. Из распространенных жёстких материалов — очень твёрд карбид вольфрама и многие вольфрамо-молибдено-содержащие сплавы. Это — холодные и тяжелые материалы, практически не поддаются мехобработке точением и фрезерованием и для них применяются ещё более сложные и современные технологии обработки. Собственно говоря, подавляющее большинство самого крепкого металлорежущего инструмента изготавливается из разновидностей комбинаций вольфрама с другими твёрдыми элементами, в том числе инструмента для обработки титана. Вольфрамосодержащие сплавы относятся к твердосплавным материалам. Для изготовления ювелирки практически не применяются, лишь изредка, т.к. для изготовления сложных изделий из вольфрамосодержащих материалов требуются слишком огромные производственные мощности, оправданные только в машиностроении и металлопроизводстве, где такая ювелирка считается не слишком крутым бонусом к основному виду деятельности. Ниже — схема замера твёрдости интендером твердомера, в различных единицах.
2. Титан не царапается. Царапается, еще как. Правда, различия в царапучести марок — достаточно выраженные и заметны даже простым глазом. На этот параметр влияет химический состав сплава и тип пост-обработки заготовки. Титаны топовых марок, изделия из которых служат во всей своей красе долго, стоят дорого и достать их чрезвычайно трудно. А дешевые марки лежат в продаже на любом складе металлобазы и стоят копейки, но изделия из них выходят и дешевые, но качеством блистать не будут. Однако, стоит отметить, что драгоценные металлы царапаются сильнее минимум вдвое, чем самая дешманская марка титана. Какой-то тип титанового сплава поцарапать легко, какой-то сложнее, какой-то ещё сложнее. В любом случае те, кто утверждают, что титан не царапается — врут. Однако, для улучшения твёрдости поверхности можно наносить на изделия спецпокрытия, которые значительно повысят износостойкость. Картинка «зацарапанной поверхности» прилагается.
3. Титан абсолютно биосовместим. Почти правда. Однако, всего лишь почти. Существует несколько био-несовместимых (точнее, аллергенных) марок, содержащие вредные примеси (но эти марки достаточно редки и врядли мастеру попадутся именно они, но чем чёрт не шутит), также подобные примеси, вызывающие аллергию, некрозы или как минимум, неприятные ощущения могут встречаться и в дешевых марках из-за заниженного контроля качества состава на производстве («Зачем ведь, спрашивается, проверять эти образцы на биосовместимость, заморачиваться с идеальной очисткой, когда мы собираемся делать из них корпус для термостата космической станции, который к тому же будет находиться снаружи корабля?»). Поэтому перед изготовлением ювелирки и бижутерии порядочный мастер-ювелир всегда отнесёт образец материала на хим.анализ, и только потом предложит клиенту. Ниже- красивая картинка зубного импланта.
4. Изделия из титана должны стоить дешево, ведь титан — очень дешевый материал. Самое распространённое заблуждение! Титан по сравннию с драгоценными металлами, конечно, стоит недорого, однако:
а) Есть очень большие проблемы в приобретении хороших марок в небольшом количестве, т.к. такой титан продаётся только большими промышленными партиями, а то и вообще не продаётся — дай-то Бог, чтобы вы смогли купить какой-нибудь обрезок из остатков «с барского стола» космической и военной промышленности, авось и повезёт. Самый дорогой титан в мире стоит около 1500 долларов за килограмм, самый дешёвый — около 1500 рублей за килограмм (по данным на 2019 год)
б) Самую большую часть стоимости изделий составляет именно обработка титана, так как она требует наличия уникального дорогостоящего инструмента и большого количества времени, а время — ресурс невосполняемый. Тем более, чем лучше титан, тем дороже инструмент и больше времени уходит на изготовление при соблюдении технологии изготовления изделий. Чтобы сделать качественно, с соблюдением всех допусков и параметров, технологию нарушать нельзя, иначе — брак и впустую потраченный материал. Ведь можно сделать хорошо, и тогда, изделие никак не будет дешёвым, а можно сделать как попало, без претензий на точность, ну или чтобы только создать иллюзию качества. А закрепка камней в титан — отдельная статья геморроя мастера, как выяснилось, разные марки титана требуют разного подхода к закрепке различных вставок, всё не так просто с ним — капризен, пружинит, и требует не совсем ювелирного (а более крутого) и дорогого инструмента при вставке и закрепке. Ниже — видео захватывающей работы пятикоординатного токарно-фрезерного станка — это одна из топовых технологий обработки металла, в том числе и титана. Использование подобных технологий для изготовления ювелирных изделий ну никак не может стоить дёшево. Смотрите.
Запомните, в производстве есть три волшебных слова, три составляющие, позволяющие комбинировать друг друга в различных позициях, однако всегда, всегда одно из слов будет лишним. Это «быстро», «качественно» и «недорого».
5. Чистый титан лучше всего. Смотря для каких целей и задач. Относительно чистый титан российского и зарубежного реестра стоит дёшево, однако обладает прочностью и твердостью немногим выше золота и серебра, а низкий уровень этих параметров даст зацарапать идеально выведенную поверхность в течении первого дня эксплуатации. Если уж сильные претензии к чистоте материала и предъявляются, то существуют иодидный и аффинированные титаны, однако вы не обрадуетесь цене на них. Ну, а самый распространённый относительно чистый и «простенький» титан применяется, в основном для удешевления бижутерной продукциии, не претендующей на качество поверхности, при создании очень сложных геометрических форм, или в случае использования его в технологии литья или какой-либо другой, не слишком дорогостоящей технологии обработки.
Касательно преимуществ и уникальности титановых сплавов, то стоит однозначно отметить их стойкость к коррозии (какие-то больше, какие-то меньше, но в бьтовых средах титан, как правило, не корродирует), при их лёгкости, высокой прочности, относительно высокой, а иногда и очень высокой твердости и практически абсолютной биосовместимости (см. выше). Титан не темнеет, не тускнеет со временем, не окисляется в агрессивных моющих химикалиях, а хорошо изготовленные изделия из качественного титана выглядят великолепно, некоторые из них — действительно плохо царапаются и долго служат своим превосходным внешним видом.
Повышенная коррозионная стойкость сплавов
Марка сплава | Процент легирующих добавок | Предел прочности кгс/мм2 | Рабочая температура |
4200 | 0,2 Pd | 60 — 100 | 300 — 600 |
4201 | 31−35 Mo | 60 — 100 | 300 — 600 |
4204 | 5 Ta | 60 — 100 | 300 — 600 |
НТ60 | 40−50 Nb | 60 — 100 | 300 — 600 |
СТ! | Ti-Al-Zr-Sn | 60 — 100 | 300 — 600 |
СТ4 | Ti-Al-Sn-Mo-Sr | 60 — 100 | 300 — 600 |
СТ6 | Ti-Al-Zr-W | 60 — 100 | 300 — 600 |
Высокопрочные сплавы с нестабильной β-структурой
Марка сплава | Процент легирующих добавок | Предел прочности кгс/мм2 | Рабочая температура |
ВТ-14 | 3,5−6,3 Al, 2,5−3,5 Mo, 0,9−1,9 V | 110 — 160 | 300 — 400 |
ВТ-15 | 2,5−3,5 Al, 6,8−8 Mo, 9,5−11 Cr | 110 — 160 | 300 — 400 |
ВТ-16 | 1,6−3 Al, 4,5−5,5 Mo, 4−5 V | 110 — 160 | 300 — 400 |
ВТ-22 | 4,4−5,9 Al, 4−5,5 Mo, 4−5,5 V, 0,5−2 Cr, 0,2−4 Si, 0,2−0,5 Fe | 110 — 160 | 300 — 400 |
ТС-6 | 3 Al, 5 Mo, 6 V, 11 Cr | 110 — 160 | 300 — 400 |