Обработка металла на токарном станке: виды работ, оборудование

Принцип токарной обработки

Токарная обработка представляет собой разновидность механической обработки непрерывно вращающихся заготовок, которая используется для создания деталей типа тел вращения путём удаления избыточного материала.
Для токарной обработки требуется токарный станок, заготовка, зажимное/фиксирующее приспособление и режущий инструмент. Заготовка представляет собой фрагмент прокатного профиля круглого поперечного сечения, который закреплён в рабочем приспособлении. Последнее, в свою очередь которое, само прикреплено к токарному станку, допуская своё вращение с достточно высокой скоростью. Резец, который выполняет формообразование, как правило, представляет собой одноточечный (иногда – многоточечный) режущий инструмент, который также закреплен в токарном станке. Режущий инструмент подаётся к вращающейся заготовке и, в процессе силового контакта с ней срезает материал в виде мелких стружек.

При производстве вращающихся, обычно осесимметричных, деталей токарная обработка находит применение для:

  1. Получения отверстий – гладких и под последующую резьбу.
  2. Производства пазов и галтельных канавок.
  3. Получения конических поверхностей.
  4. Выполнения ступенчатых диаметральных переходов.

Точением можно получать также и фасонные поверхности. Для этого применяют станки-автоматы или токарные обрабатывающие центры, на которых имеется возможность автоматической переустановки резца/резцов.

Детали, которые изготавливаются исключительно токарной обработкой, чаще применяются с ограниченной программой выпуска. Это могут быть эталонные прототипы валов или и крепёжных изделий, которые производятся по индивидуальному заказу, а затем используются от отработки технологических решений в массовом производстве. Обработка на токарном станке часто применяется в качестве вторичного (или финишного) процесса, когда требуется внести некоторые характеристики контура детали, позволяющие улучшить её геометрические показатели, полученные, например, горячей штамповкой. Благодаря малым допускам и высокому качеству поверхности, которые может предложить токарная обработка, процесс идеально подходит для создания прецизионных деталей типа тел вращения.

обработка на токарном станке

Главная Micromake Информация Практикум Задания Fireline Контакты

Cодержание

Парфеньева И.Е. ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ. М.: Учебное пособие, 2009

4. Виды обработки точением. Основные типы токарных резцов. Элементы и геометрические параметры токарного резца.

4.1. Виды обработки точением

На токарных станках, и в частности на токарно-винторезных, можно выполнить следующие виды работ: точение в центрах, в патроне и на планшайбе; растачивание; торцовое точение; отрезку и подрезку; нарезание резьбы; точение конусов, фасонных поверхностей и другие виды работ с применением соответствующих инструментов и приспособлений.

Обработка поверхностей осуществляется либо с продольной, либо с поперечной подачей. Формообразование поверхностей при обработке с продольной подачей осуществляется по методу следов, при обработке с поперечной подачей – в основном по методу копирования.

Точение в центрах

Прутковые детали (валы, оси) с отношением длины к диаметру обычно подвергают продольному точению в центрах с использованием проходных резцов. Деталь с просверленными осевыми отверстиями на торцах зажимают между центрами передней и задней бабок. Центр передней бабки устанавливают в шпинделе, а задний – в пиноли задней бабки. На одном из концов детали закрепляют хомутик при помощи винта так, чтобы палец входил в прорезь поводковой планшайбы. Планшайбу навинчивают на передний конец шпинделя.

При обработке длинных деталей для предохранения их от прогиба применяют направляющие приспособления – люнеты. Люнет может быть неподвижным (крепится на направляющих станины) и подвижным (устанавливается на каретке суппорта и двигается вместе с ней).

При обработке тяжелых и длинных деталей (из проката) один конец закрепляется в патроне, а другой поддерживается центром задней бабки. Это обеспечивает необходимую жесткость крепления детали и уменьшает износ центров.

Точение в патроне

Обработка деталей с соотношением проводится при закреплении их в патроне. Патроны бывают трех- и четырехкулачковые.

Трехкулачковый самоцентрирующий патрон используют обычно для закрепления симметричных деталей. В этом патроне захватывающие кулачки могут одновременно радиально перемещаться к центру или от него.

В четырехкулачковых патронах имеется независимое перемещение каждого из кулачков. Эти патроны используют для установки и закрепления деталей сложной и несимметричной формы.

Точение на планшайбе

Планшайба, навинчиваемая на шпиндель, используется при обработке несимметричных деталей и деталей сложной формы. Планшайба представляет собой диск с радиально прорезанными пазами. Обрабатываемая деталь укрепляется на планшайбе болтами. Иногда сначала ставят угольник и к нему прикрепляют обрабатываемую деталь. Закрепленная деталь уравновешивается противовесом.

Точение разделяется на черновое и чистовое. При черновом обтачивании снимается припуск 2-5 мм. Обтачивание производят проходными резцами (рис.1). Радиус закругления вершины черновых резцов R=0,5-1 мм, получистовых R=1,5-2 мм, для чистового точения R=3-5 мм.

Рис.1. Схемы обтачивания

1 – продольное точение прямым проходным левым резцом

2 – продольное точение прямым проходным правым резцом

3 – продольное точение отогнутым правым резцом

4 – продольное точение упорно-проходным правым резцом

Припуски на чистовое обтачивание колеблются в пределах 1-2 мм и менее на сторону. Обтачивание ведут резцами с закругленной режущей кромкой и широкими резцами.

Для обтачивания торцовых поверхностей применяют подрезные резцы (рис.2). При обработке торцовых поверхностей заготовки закрепляют теми же способами, что и при обработке наружных цилиндрических поверхностей. При закреплении в патроне вылет заготовки должен быть минимальным. Для подрезки торца заготовки при закреплении ее с поджимом задним центром используют специальный срезанный опорный неподвижный центр.

Рис.2. Подрезание торцов резцами:

а) прямым проходным

б) отогнутым проходным

в) проходным упорным

г) подрезным

Растачивание предварительно просверленных или полученных при заготовительных операциях отверстий выполняют обдирочными и чистовыми (с загругленной режущей кромкой) резцами. Расточные резцы для сквозных отверстий имеют главный угол в плане меньше 90о, у расточных резцов для глухих отверстий угол равен или несколько больше 90о (рис.3).

а) б)

Рис.3. Растачивание отверстия сквозного (а) и глухого (б) расточным

обдирочным резцом

Отрезание частей заготовок и протачивание кольцевых канавок производят отрезными резцами и прорезными (канавочными) резцами (рис.4).

Рис.4. Прорезка канавки прорезным резцом или отрезка отрезным резцом

Для обработки фасонных поверхностей применяются круглые и призматические фасонные резцы или копиры.

Обработка конических поверхностей

Обработка конических поверхностей может производиться следующими методами:

1.Посредством смещения корпуса задней бабки

2.Поворотом каретки верхнего суппорта

3.При помощи копировальной линейки

4.Обточки широким резцом

Обтачивание конических поверхностей поперечным смещением корпуса задней бабки (рис.5)

Рис.5. Точение конусов поперечным смещением корпуса задней бабки

1- поводковый патрон; 2- передний центр; 3- хомутик;

4- задний центр; 5- пиноль задней бабки; 6 – заготовка; 7 – резец

При этом способе смещают ось центров, сдвинув задний центр в поперечном направлении. Образующая обрабатываемой конической поверхности заготовки, установленной в центрах передней и задней бабки, будет параллельна линии центров станка.

Величину поперечного смещения корпуса задней бабки определяют по формуле:

, мм

где: d

— диаметр малого основания конуса, мм;
D
– диаметр большого основания конуса, мм;
L
– длина всей обрабатываемой заготовки, мм;
l
– высота конической поверхности, мм.

Этим способом обрабатывают длинные наружные конические поверхности с небольшой конусностью с углом не более .

Недостатки способа: невозможность обработки внутренних конических поверхностей; возможность получения только пологих конусов; повышенный и неравномерный износ центров и центровых отверстий вследствие перекоса центров.

Обработка конических поверхностей поворотом каретки верхнего суппорта (рис.6).

Рис.6. Точение конусов поворотом каретки верхнего суппорта.

1- трехкулачковый патрон; 2 – заготовка; 3 – рукоятка для ручного перемещения верхнего суппорта; 4 – верхний суппорт с резцедержателем; 5 — резец

Этим способом обтачивают (и растачивают) короткие конические поверхности с любым углом конуса. Для этого каретку верхнего суппорта поворачивают на угол , равный половине угла при вершине обрабатываемого конуса. Обработку ведут с ручной подачей верхнего суппорта под углом к линии центров станка . Значение угла определяют из выражения:

.

Недостатки способа: применение ручной подачи, снижающей производительность труда и увеличивающей шероховатость обработанной поверхности; невозможность обтачивать конические поверхности, длина образующих которых превышает длину хода каретки верхнего суппорта (100-150 мм).

Обтачивание конической поверхности широким токарным резцом (рис.7).

Рис.7. Точение конусов широким токарным резцом

1 – трехкулачковый патрон; 2 – заготовка; 3 – задний центр; 4 – резец

Этим способом обтачивают короткие конические поверхности с длиной образующей не более 25-30 мм токарными проходными резцами, у которых главный угол в плане равен половине угла при вершине обтачиваемой конической поверхности. Длина главного режущего лезвия резца должна быть на 1-3 мм больше длины образующей конической поверхности. Обработку ведут с поперечной или продольной подачей резца. Способ широко используют при снятии фасок с обработанных цилиндрических поверхностей.

Недостатки способа: невозможность обрабатывать длинные конические поверхности, т.к. с увеличением длины детали возникают вибрации, повышающие шероховатость обрабатываемой поверхности; низкое качество обработанной поверхности.

4.2. Основные типы токарных резцов

Токарные резцы классифицируют по ряду признаков.

1. По виду выполняемой работы или по технологическому признаку: проходные (1), подрезные(2), расточные(3), отрезные(4), резьбовые(5) и др.

2. По форме головки резца: прямые (1), отогнутые(2), изогнутые(3), оттянутые(4).

1 2 3 4

3. По направлению подачи: левые(1), правые (2).

Правым

называется резец, у которого главная режущая кромка расположена со стороны большого пальца правой руки, наложенной ладонью на резец так, чтобы пальцы были направлены к вершине резца. При точении такими резцами стружка срезается с заготовки при перемещении суппорта справа налево.

Левым

называется резец, у которого главная режущая кромка расположена со стороны большого пальца левой руки, наложенной ладонью на резец так, чтобы пальцы были направлены к вершине резца. При точении такими резцами стружка срезается с заготовки при перемещении суппорта слева направо.

4. По материалу режущей части: из быстрорежущей стали, твердого сплава.

5. По конструкции режущей части: цельные и составные (с припаянной пластинкой или с механическим креплением режущей пластинки).

4.3. Элементы и геометрические параметры токарного резца

Любой режущий инструмент состоит из двух частей: I- режущей части; II- крепежной части (рис.8).

Рис.8. Элементы токарного резца

На режущей части различают следующие элементы:

1-переднюю поверхность, по которой сходит стружка

2-главная задняя поверхность, примыкающая к главному лезвию

3-главное режущее лезвие

4-вершина резца

5-вспомогательная задняя поверхность, примыкающая к вспомогательному лезвию

6-вспомогательное режущее лезвие

4.4. Геометрия резцов в статике

4.4.1. Координатные плоскости

Для осуществления процесса резания резец затачивают по передней и задней поверхностям. Для отсчета величины углов резца пользуются координатными плоскостями (рис.9, 10).

Основная плоскость (ОП) – плоскость, параллельная направлениям продольной (Sпр

) и поперечной (
Sп
) подач. У токарных резцов основная плоскость совпадает, как правило, с нижней опорной поверхностью стержня резца.

Рис.9. Координатные плоскости

Плоскость резания (ПР) проходит через главное режущее лезвие резца, касательно к поверхности резания заготовки.

Главная секущая плоскость (NN) проходит через произвольную точку главного режущего лезвия перпендикулярно к проекции главного режущего лезвия на основную плоскость.

Вспомогательная секущая плоскость проходит через произвольную точку вспомогательного режущего лезвия перпендикулярно к проекции вспомогательного режущего лезвия на основную плоскость.

Рис.10. Геометрические параметры режущей части прямого токарного

проходного резца

4.4.2. Углы токарного резца

Главные углы заточки резца измеряют в главной секущей плоскости.

Передним углом

называют угол между передней поверхностью и плоскостью, перпендикулярной к плоскости резания, проведенной через главное режущее лезвие.

Задним углом

называют угол между главной задней поверхностью резца и плоскостью резания.

Угол между передней и главной задней поверхностями называют углом заострения

резца .

Угол между передней поверхностью и плоскостью резания называют углом резания

.

Углы в плане определяются в основной плоскости.

Главный угол в плане

— угол между проекцией главного режущего лезвия на основную плоскость и направлением подачи.

Вспомогательный угол в плане

— угол между проекцией вспомогательного режущего лезвия на основную плоскость и направлением, противоположным направлению подачи.

Угол при вершине резца

— угол между проекциями главного и вспомогательного режущих лезвий на основную плоскость.

Угол наклона главного режущего лезвия

измеряют в плоскости, проходящей через главное режущее лезвие перпендикулярно к основной плоскости, между главным режущим лезвием и линией, проведенной через вершину резца параллельно основной плоскости.

Угол может быть положительным (вершина резца является низшей точкой главного режущего лезвия), отрицательным (вершина резца является высшей точкой главного режущего лезвия), или равен нулю.

Вспомогательные углы резца рассматриваются во вспомогательной секущей плоскости.

Вспомогательный задний угол

— угол между вспомогательной задней поверхностью и плоскостью, проходящей через вспомогательную режущую кромку перпендикулярно к основной плоскости.

Назначение углов

Задний угол служит для уменьшения трения между задней поверхностью резца и деталью. С уменьшением трения уменьшается нагрев и износ инструмента, но при большом заднем угле резец ослабнет и может сломаться. С увеличением заднего угла чистота обработанной поверхности улучшается. Чем мягче металл, тем больше должен быть угол . .

Передний угол . Основное назначение – уменьшение деформации стружки. С увеличением переднего угла облегчается врезание резца в металл, уменьшается деформация срезаемого слоя, облегчается сход стружки, уменьшается сила резания и расход мощности. Уменьшение улучшает теплоотвод резца и упрочняет режущую кромку. Для мягких материалов углы берутся больше. .

Если передняя поверхность направлена вниз от режущей кромки, то считается положительным, если передняя поверхность резца направлена вверх от режущей кромки, то считается отрицательным. Резцы с отрицательным применяют для обдирочных работ стали с ударной нагрузкой или при неравномерном припуске на мощных токарных станках. Преимущество таких резцов на обдирочных работах заключается в том, что удары воспринимаются не режущей кромкой, а всей передней поверхностью.

Главный угол в плане . Определяет соотношение между толщиной и шириной среза. С уменьшением уменьшается толщина срезаемого слоя и увеличивается ширина, т.е. длина режущей кромки, находящейся в соприкосновении с заготовкой. Сила и температура резания, приходящаяся на единицу длины режущей кромки уменьшается, стойкость возрастает, снижается шероховатость обработанной поверхности. Однако с уменьшением возрастает радиальная сила резания и вибрации резца. .

Вспомогательный угол в плане . Оказывает влияние на чистоту обработки. С уменьшением уменьшается высота остаточных гребешков, улучшается чистота поверхности, но возрастает сила трения. .

Угол при вершине резца . Чем больше этот угол, тем прочнее резец и лучше условия теплоотвода.

Угол заострения . Определяет остроту и прочность инструмента.

Угол наклона главной режущей кромки . Оказывает влияние на направление схода стружки. При положительном и =0 стружка сходит к обрабатываемой поверхности. Положительный угол служит для упрочнения режущей кромки и применяется при обработке закаленных, жаропрочных сталей и при ударных работах. . При чистовой обработке отрицательный. Для универсальных токарных резцов =0.

Вспомогательный задний угол служит для устранения трения вспомогательной задней поверхности резца об обработанную поверхность.

Далее

Cодержание

Главная Micromake Информация Практикум Задания Fireline Контакты

Основные виды токарных работ по металлу

Современные токарные станки позволяют выполнять с обрабатываемой заготовкой различные переходы, которые можно подразделить на внешние и внутренние. Внешние операции изменяют наружный диаметр заготовки, а внутренние операции изменяют внутренниё её размеры. Каждый из последующих переходов точения определяется типом используемого режущего инструмента фрезы и траекторией движения этого инструмента, обеспечивающей съём металла.

При классической токарной обработке внешнего контура однолезвийный металлорежущий инструмент перемещается в осевом направлении вдоль наружной поверхности заготовки, удаляя материал и формируя различные элементы: ступеньки, конусы, фаски и т.п. Эти элементы обычно обрабатываются при небольшой радиальной подаче инструмента. Возможно несколько проходов резца, пока не будут достигнуты значения конечного диаметра, установленные требованиями чертежа.

Специфическими переходами при точении металлов считаются:

  1. Торцевание – процесс получения гладкой ровной поверхности на одном из торцов заготовки. Торец может быть получен за один или несколько проходов, в зависимости от осевой глубины резания.
  2. Обработка канавок, для чего резец перемещается с радиальной подачей, образуя канавку, ширина которой соответствует ширине инструмента. Для формирования канавок различной геометрии можно использовать специальные инструменты.
  3. Отрезка – переход, для выполнения которого резец перемещается при радиальной подаче до тех пор, пока не достигнет центра или внутреннего диаметра заготовки.
  4. Нарезание наружной резьбы, для чего резец (обычно с заострённым под углом 600 концом) перемещают в осевом и радиальном направлениях, формируя резьбу на внешней поверхности. Резьба может быть нарезана с определёнными длиной и шагом, причём для её формирования может потребоваться несколько проходов.

токарная обработка металла

Внутренние операции:

  • Сверление, при котором сверло внедряется в заготовку в осевом направлении, получая отверстие диаметром, равным диаметру инструмента.
  • Растачивание, когда производят увеличение диаметра ранее полученного отверстия. При растачивании получают также различные внутренние элементы — ступеньки, конусы, фаски и т.п. Растачивание обычно выполняется после сверления.
  • Развёртка – посредством этого перехода, как и при растачивании, увеличивают существующее отверстие. В отличие от развёртывания, здесь удаляется минимальное количество материала с целью получения более гладкой внутренней поверхности.
  • Нарезание внутренней резьбы, которое выполняется метчиком, при его осевой подаче. В существующем отверстии обычно просверливается отверстие, диаметр которого равен диаметру заходной части метчика.

Токарная обработка металла предполагает и иные, специализированные переходы, использующие вращение заготовки.

Какие инструменты используются для металлообработки на токарных станках

Для металлообработки настраиваются такие параметры оборудования, как количество оборотов патрона в единицу времени, толщина снимаемого слоя стали, подбирается необходимый инструмент.

Тип материала является определяющим для задания параметров и выбора резца. Чем прочнее и тверже металл, тем меньший его слой снимается за один проход и качественнее должны быть резцы.

В металлообработке используются следующие инструменты:

  • для черновой обдирки заготовок применяются инструменты с более крупной резцовой пластиной, прямые, отогнутые и усиленные. Подобные резцы способны снимать за один проход толстый слой материала без повреждения рабочей части;
  • чистовые резцы с узкой пластиной используются для снятия металла тонкими слоями. В зависимости от параметров заготовки, применяются соответствующий режущий инструмент;
  • специальные отрезные резцы используются для резки заготовок в размер. По виду инструмент отличается от проходных и упорных аналогов, так как его перемещение осуществляется только в поперечном направлении;
  • расточка и развертывание отверстий также выполняется с использованием специальных резцов, рабочая поверхность которых обращена наружу. Разновидностей подобного инструмента достаточно много.

При выборе инструмента особое внимание уделяется углу разворота режущей части. Например, если работа выполняется с заготовками из жесткой стали и большого диаметра, то стандартный угол разворота резца варьируется от 35 до 40 градусов. Для обработки заготовок меньшего размера из мягких сортов стали угол развертки увеличивается до 60-90 градусов.

Режущий инструмент

Инструмент, который требуется для токарной обработки, обычно представляет собой цельные или составные резцы прямоугольной формы. Вставки составного инструмента могут различаться по размеру и форме, но обычно имеют форму квадрата, треугольника или ромба. Инструмент вставляются в посадочное место суппорта станка и подаются к вращающейся заготовка для резки. Режущий инструмент классифицируется по:

  • Углу вылета резца – от 0 до 800;
  • Форме рабочего торца –квадратный или заострённый;
  • Направлению перемещения с суппортом – право- или левосторонние;
  • Материалу режущей кромки – стальной или твердосплавный.

Кроме резцов, в качестве рабочего инструмента токарных станков используют свёрла, фрезы, метчики, развёртки и т.п.

Принцип токарной обработки

Фрезы, в частности, представляют собой цилиндрические многоточечные режущие инструменты с острыми зубьями, расположенными снаружи. Промежутки между зубьями называются канавками и позволяют стружке сходить с обрабатываемой заготовки. Зубья могут быть прямыми или спиральными; наличие угла наклона спирали вдоль стороны фрезы, но чаще они расположены по спирали. Угол наклона спирали снижает нагрузку на зубья за счет перераспределения сил. Чем больше зубьев, тем лучше качество полученной поверхности.

Все режущие инструменты, используемые при токарной обработке, могут быть изготовлены из инструментальных сталей или твёрдых сплавов. Критериями выбора являются твёрдость, ударная вязкость и износостойкость инструмента.

Виды и типы инструментов

Токарный станок – универсальное средство для проведения работ с использованием инструмента:

  • резцового (резцы – основной вид инструмента в токарной обработке);
  • сверлильного (сверл, зенкеров, зенковок, разверток);
  • резьбонарезного (метчиков – для внутренней резьбы, плашек – для наружной).

Многочисленные возможности токарного оборудования позволяют решать проблемы чистоты и точности обработки, так, используя последовательно операции с применением различных типов и конструкции инструмента, можно добиться высоких показателей по всем необходимым параметрам чистоты и точности обрабатываемых поверхностей.

Виды используемого оборудования

Точение металла реализуется на токарно-винторезных станках, станках-автоматах или токарных обрабатывающих центрах. Большинство токарных станков представляют собой оборудование горизонтального исполнения.

Основные узлы токарного станка с ручным управлением:

  • Станина – опорная часть оборудования, на которой размещены все остальные его элементы.
  • Передняя бабка, в которой расположен электродвигатель и система привода, приводящая в действие шпиндель.
  • Шпиндель – поддерживает и вращает заготовку, которая закреплена в цанговом патроне.
  • Задняя бабка, фиксирующая противоположный конец заготовки (иногда сюда включают люнет – приспособление, поддерживающее длинные заготовки, жёсткость которых снижена).
  • Суппорт – возвратно-поступательно перемещающаяся платформа, на которой закрепляется рабочая головка с инструментом.

Токарные станки могут управляться компьютером, и в этом случае они называются токарными станками с числовым программным управлением. Все операции, выполняемые на таких агрегатах, автоматизированы и управляются встроенным компьютером.

Особенности оборудования и его работы

Токарные станки бывают автоматизированными (ЧПУ) и предназначенными для ручной работы. Современные ЧПУ оснащены числовым пультом для самостоятельного, автоматического решения необходимой задачи. Единственным исключением является функция установки болванки — это действие должен выполнить оператор. Аппараты такого типа отличаются высокой точностью и простотой использования.

Применение токарных ручных станков предусматривает необходимость установки заготовки, резца, проведения расчетов, направления суппорта на исходную точку, выбора скорости вращения и режима подачи. Кроме того, во время работы мастер должен самостоятельно менять все заданные параметры.

В отдельную категорию входят также станки:

  • токарно-винторезные — на них изделиям придают конусность, нарезают резьбу, накатывают рифления, вытачивают канавки и др.;
  • токарно-револьверные — позволяют выполнять обработку деталей со сложной конфигурацией, например, прутки, поковки, отливки;
  • токарно-карусельные (одно-, двухстоечные) — токарная обработка изделий большого диаметра;
  • многорезцовые полуавтоматические;
  • в виде обрабатывающих комплексов (для токарных и фрезерных работ).
Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]