Оставили
: отдельные линейные полимерные цепи
Правильно
: Полимерные цепи, которые были сшитый для получения жесткого трехмерного термореактивного полимера
А термореактивный полимер, смола или пластик
, часто называемый
термореактивный
, это полимер что необратимо закаливается лечение из мягкого твердого вещества или вязкой жидкости форполимер или смола.[1] Отверждение происходит под воздействием тепла или подходящего радиация и может стимулироваться высоким давлением или смешиванием с катализатор. Необязательно применять тепло снаружи. Он часто возникает в результате реакции смолы с отвердителем (
катализатор
,
отвердитель
). Отверждение приводит к химическим реакциям, которые создают обширные сшивание между полимерными цепями для создания настоянный и нерастворимый полимерная сетка.
Исходным материалом для изготовления термореактивных материалов обычно является податливый или жидкость перед отверждением, и часто предназначены для формованный в окончательную форму. Его также можно использовать как клей. После затвердевания термореактивный пластик нельзя расплавить для изменения формы, в отличие от термопласт полимеры, которые обычно производятся и распространяются в форме гранул, которым придают форму конечного продукта путем плавления, прессования или литья под давлением.
Химический процесс
Лечение термореактивная смола превращает его в пластик, или же эластомер (резинка) к сшивание или удлинение цепи за счет образования ковалентных связей между отдельными цепями полимера. Плотность сшивки варьируется в зависимости от смеси мономеров или форполимеров и механизма сшивания:
Акриловые смолы, полиэфиры и виниловые эфиры с ненасыщенными участками на концах или на основной цепи обычно связаны сополимеризацией с ненасыщенный мономер разбавители, отверждение которых инициируется свободными радикалами, генерируемыми ионизирующим излучением, или фотолитическим или термическим разложением радикального инициатора — на интенсивность сшивания влияет степень ненасыщенности основной цепи в форполимере;[2]
Эпоксидные функциональные смолы могут быть гомополимеризованы с анионными или катионными катализаторами и нагреванием или сополимеризованы посредством реакций нуклеофильного присоединения с многофункциональными сшивающими агентами, которые также известны как отвердители или отвердители. По мере протекания реакции все больше и больше образуются молекулы и развиваются сильно разветвленные сшитые структуры, причем скорость отверждения зависит от физической формы и функциональности эпоксидных смол и отвердителей.[3] — постотверждение при повышенной температуре вызывает вторичное сшивание гидроксильных функциональных групп основной цепи, которые конденсируются с образованием эфирных связей;
Полиуретаны образуются, когда изоцианатные смолы и форполимеры комбинируются с полиолами с низкой или высокой молекулярной массой, при этом строгие стехиометрические соотношения необходимы для контроля нуклеофильной аддитивной полимеризации — степень сшивки и конечный физический тип (эластомер или пластик) регулируется в зависимости от молекулярной массы и функциональность изоцианатных смол, форполимеров и точных комбинаций выбранных диолов, триолов и полиолов, причем на скорость реакции сильно влияют катализаторы и ингибиторы; полимочевины образуются практически мгновенно, когда изоцианатные смолы комбинируются с длинноцепочечными аминными функциональными полиэфирными или полиэфирными смолами и короткоцепочечными диаминовыми наполнителями — реакция нуклеофильного присоединения амин-изоцианат не требует катализаторов. Полимочевины также образуются при контакте изоцианатных смол с влагой;[4]
Все фенольные, амино- и фурановые смолы отверждаются поликонденсацией, включающей выделение воды и тепла, с контролем за инициированием отверждения и экзотермией полимеризации, зависящим от температуры отверждения, выбора катализатора или загрузки и метода обработки или давления — степени предварительной полимеризации и уровня остаточных количеств Содержание гидроксиметила в смолах определяет плотность сшивки.[5]
Бензоксазины отверждаются экзотермической полимеризацией с раскрытием кольца без выделения каких-либо химических веществ, что приводит к почти нулевой усадке при полимеризации.[6]
Смеси термореактивных полимеров на основе мономеров и форполимеров термореактивных смол могут быть составлены, применены и обработаны различными способами для создания отличительных свойств отверждения, которых нельзя добиться с помощью термопластичных полимеров или неорганических материалов.[7][8] Применение / способы применения и методы термореактивных материалов включают: защитное покрытие, бесшовные полы, гражданское строительство строительство затирки для соединения и инъекции, минометы, формовочные пески, клеи, герметики, отливки, заливка, электрическая изоляция, инкапсуляция, 3D печать, твердый пены, влажная укладка ламинирование, пултрузия, гелькоуты, намотка нити, pre-pregs, и литье. Конкретными методами формования термореактивных материалов являются:
- Реактивный литье под давлением (используется для таких предметов, как ящики для бутылок из-под молока)
- Экструзионное формование (используется для изготовления труб, тканевых нитей и изоляции электрических кабелей)
- Компрессионное формование (используется для придания формы SMC и BMC термореактивные пластмассы)
- Спин-кастинг (используется для производства рыболовные приманки и приспособления, игровые миниатюры, статуэтки, эмблемы, а также изготовление и запасные части)
Проблемы при оплате банковскими картами
Реактопласты
Иногда при оплате банковскими картами Visa / MasterCard могут возникать трудности. Самые распространенные из них:
- На карте стоит ограничение на оплату покупок в интернет
- Пластиковая карта не предназначена для совершения платежей в интернет.
- Пластиковая карта не активирована для совершения платежей в интернет.
- Недостаточно средств на пластиковой карте.
Для того что бы решить эти проблемы необходимо позвонить или написать в техническую поддержку банка в котором Вы обслуживаетесь. Специалисты банка помогут их решить и совершить оплату.
Вот, в принципе, и все. Весь процесс оплаты книги в формате PDF по ремонту автомобиля на нашем сайте занимает 1-2 минуты.
Если у Вас остались какие-либо вопросы, вы можете их задать, воспользовавшись формой обратной связи, или написать нам письмо на [email protected]
Характеристики
Термореактивные пластмассы обычно прочнее, чем термопласт материалы из-за трехмерной сети связей (сшивание), а также лучше подходят длятемпература применения до температуры разложения, поскольку они сохраняют свою форму, поскольку прочные ковалентные связи между полимерными цепями не могут быть легко разрушены. Чем выше плотность сшивки и содержание ароматических веществ в термореактивном полимере, тем выше устойчивость к термическому разложению и химическому воздействию. Механическая прочность и твердость также улучшаются с увеличением плотности сшивки, хотя и за счет хрупкости.[9] Обычно они разлагаются перед плавлением.
Твердые пластмассовые реактопласты могут подвергаться остаточной или пластической деформации под нагрузкой. Эластомеры, которые являются мягкими и упругими или эластичными и могут деформироваться и возвращаться к своей исходной форме при снятии нагрузки.
Обычные термореактивные пластмассы или эластомеры нельзя растаял и меняют форму после отверждения. Обычно это предотвращает переработку с той же целью, за исключением использования в качестве наполнителя.[10] Новые разработки, связанные с термореактивными эпоксидными смолами, которые при контролируемом нагреве и содержат сшитые сети, допускающие многократное изменение формы, как кварцевое стекло, путем обратимых реакций обмена ковалентными связями при повторном нагреве выше температуры стеклования.[11] Существуют также термореактивные полиуретаны, которые обладают переходными свойствами и, таким образом, могут быть переработаны или переработаны.[12]
Термопластичные полимеры
Полимеры этого класса имеют линейную структуру длинных цепей, которые могут иметь перекрестные соединения за счет химически активных добавок. Материалы полимеризуются при снижении температуры ниже температуры плавления.
Основные типы термопластов:
- Полиэтилен низкого и высокого давления — органическое соединение на основе соединений углерода в циклической молекуле. Температура пластификации 100° С для ПЭНД и 260° С для ПЭВД. При этом давление прессования ПЭВД составляет 150…300 МПа. Линейная структура полиэтиленов, при создании специальных условий или добавлении силанов, создает условия для получения «сшитого» полиэтилена. Ветви полимера типа РЕх-b образуют большое количество «боковые» ответвления, которые повышают плотность и механическую прочность, но не меняют химических свойств. Применяются для производства «бесконечных» изделий методом экструзии (трубы, слабонагруженные несущие элементы конструкций и т.п.) и производства большой номенклатуры изделий методом прессования в замкнутой форме.
- Полиуретаны типа «Витур» — сложные химические соединения, которые для полимеризации требуют присутствия отвердителя органического типа. Полимерные цепочки имеют сложную форму, т.к. в ее структуру входят замещенные и незамещенные химические элементы. Область применения зависит от структуры полимера в твердом виде — линейной или сетчатой. Все технические типы (НИЦ ПУ-5; СКУ-ПФЛ-100;ТСКУ-ФЭ-4 и др.) имеют высокую износостойкость при твердости по Шору не ниже 75 ед. Продукция изготавливается методом прессования, литья, заливки в формы и методом экструзии.
Полиэтилены относятся к классическому типу термопластов, т.к. они допускают повторный нагрев и обработку давлением. Полиуретаны повторно используются после измельчения и добавления в состав первичного сырья.
Армированные волокном материалы
При смешивании с волокнами термореактивные смолы образуют армированный волокном полимер композиты, которые используются при изготовлении заводских готовых конструкционных композитных компонентов OEM или запасных частей,[13] и в качестве ремонта на месте, отверждения и окончательного композитного ремонта[14][15] и защитные материалы. При использовании в качестве связующего для заполнителей и других твердых наполнителей они образуют армированные частицами полимерные композиты, которые используются для заводских защитных покрытий или изготовления компонентов, а также для строительства и отверждения на месте строительства, или поддержание целей.
Полистирол
Полистирол – пример самого распространенного термопластичного полимера. На вид он бесцветный, прозрачный и твердый. Полистирол является более прочным и жестким материалом, имеет большую рабочую температуру использования и меньшую склонность к старению по сравнению с полиэтиленом. Считается хорошим электрическим изолятором и обладает высокой водоотталкивающей способностью. Очень стоек к щелочным и кислотным средам, не подвержен плесени и грибкам.
Полистирол хорошо растворяется в углеводородах, сложных эфирах. Он очень хрупкий и хорошо горит.
Для увеличения прочности полистирол соединяют с другими полимерами или каучуком. Готовые изделия и заготовки из полистирола легко поддаются обработке. Детали изготавливаются при помощи литья жидкого компонента либо способом выдавливания под давлением.
Из полистирола изготавливают лабораторную химическую посуду, трубки, нити, пленки и ленты. Широко используется материал в электротехнике при производстве изоляторов и, в первую очередь, защитной оболочки на электрические провода. Для промышленной дальнейшей обработки материал первоначально выпускается в листах и в виде крошки, которые в дальнейшем могут служить сырьем для конечных деталей и механизмов.
Полистирол популярен в процессе сополимеризации, когда смешивают два и более полимера. Получаются материалы, которым придаются дополнительные полезные свойства своих компонентов. Как правило, это прочность, огнестойкость, стойкость к растрескиванию. Жидкий полистирол с растворителем применяется при производстве клеев и клеевых основ. Широко используется в строительстве при производстве пенополистирола. Из данного материала выпускаются теплоизоляционные блоки.
Пенополистирол используется для теплоизоляции холодильных установок, продуктовых витрин и другого торгового оборудования. Данный материал внешне напоминает застывшую пену. Хорошо выдерживает повышенную влажность, не подвержен гниению, стоек к образованию бактерий и грибков. Может использоваться при температуре до + 70С градусов. Главный недостаток пенополистирола – повышенная горючесть.
Применяется как термо- и звукоизоляционный материал при производстве бытовок, а также различной бытовой и промышленной техники, в пищевой промышленности – для изоляции камер хранилищ, трюмов плавучих средств и помещений для хранения продуктов питания при отрицательных температурах до -35С градусов. Используется также в производстве упаковочного материала.
Примеры
- Полиэфирная смола системы из стекловолокна: листовые формовочные смеси и формовочные смеси для объемных форм; намотка филамента; ламинация мокрым способом; ремонтные составы и защитные покрытия.
- Полиуретаны: изоляционные пены, матрасы, покрытия, клеи, автомобильные детали, ролики для печати, подошвы для обуви, напольные покрытия, синтетические волокна и т. д. Полиуретановые полимеры образуются путем объединения двух двух- или более функциональных мономеров / олигомеров.
- Полимочевина/полиуретан гибриды, используемые для получения износостойких гидроизоляционных покрытий.
- Вулканизированная резина.
- Бакелит, а фенол-формальдегид смола, используемая в электрических изоляторах и пластмассовых изделиях.
- Дуропласт, легкий, но прочный материал, похожий на бакелит, используемый для изготовления деталей автомобилей.
- Карбамидоформальдегид пена, используемая в фанера, ДСП и МДФ.
- Смола меламина используется на поверхностях столешниц.[16]
- Диаллил-фталат (DAP) используется в высокотемпературных электрических соединителях и других компонентах. Обычно наполнен стеклом.
- Эпоксидная смола [17] используется как матричный компонент во многих пластмассы, армированные волокном например, стеклопластик и пластик, армированный графитом; Кастинг; герметизация электроники[18]; строительство; защитные покрытия; клеи; герметизация и соединение.
- Эпоксидные новолачные смолы, используемые для изготовления печатных плат, электроизоляции, клеев и покрытий по металлу.
- Бензоксазины, используемые отдельно или в сочетании с эпоксидными и фенольными смолами, для структурных препрегов, жидких формовочных и пленочных клеев для композитных конструкций, склеивания и ремонта.
- Полиимиды и Бисмалеимиды Используется в печатных платах и деталях корпусов современных самолетов, аэрокосмических композитных конструкциях, в качестве материала покрытия и для стеклопластиковых труб.
- Цианатные эфиры или полицианураты для электроники, требующей диэлектрических свойств и требований к высокой температуре стекла в конструкционных композитных компонентах аэрокосмической отрасли.
- Формы или направляющие формы (черная пластиковая часть в интегральных схемах или полупроводниках).
- Фуран смолы, используемые при производстве устойчивых биокомпозитных конструкций,[19] цементы, клеи, покрытия и литейные / литейные смолы.
- Силиконовый смолы, используемые для композитов с термореактивной полимерной матрицей и в качестве предшественников композиционных материалов с керамической матрицей.
- Тиолит, электроизоляционный термореактивный фенольный ламинат.
- Виниловый эфир смолы, используемые для мокрого ламинирования, формования и быстросхватывающихся промышленных защитных и ремонтных материалов.
Термореактивные пластмассы (реактопласты)
- Главная
- >
- Библиотека
- >
- Новые материалы в металлургии
Основу всякого реактопласта составляет химически затвердевающая термореактивная смола – связующее вещество. Кроме того, в состав реактопластов входят наполнители, пластификаторы, отвердители, ускорители или замедлители и растворители. Наполнителями могут быть порошковые, волокнистые и гибкие листовые материалы. В качестве порошковых наполнителей используют молотый кварц, тальк, графит, древесную муку, целлюлозу. К пластмассам с порошковыми наполнителями относятся: фенопласты и аминопласты
. Из них изготавливают несиловые конструкционные и электроизоляционные детали (рукоятки, детали приборов, кнопки и т. д.), различные вытяжные и формовочные штампы, корпуса сборочных и контрольных приспособлений, литейные модели и другую оснастку.
Фенопласты (бакелиты, феноло-формальдегидные смолы) являются термоупрочняемыми пластмассами. Неупрочненные смолы получают при поликонденсации фенола с формальдегидом. Существует два основных типа феноло-формальдегидных смол: новолаки и резолы.
Для получения пластмассы с хорошими потребительскими свойствами в новолаки добавляют субстанцию (обычно уротропин), которая при нагревании разлагается с выделением формальдегида. Формальдегид, добавляемый к новолаковой смоле, образует упрочняющиеся гидроксиметильные группы.
Упрочнение термопластов в основном проводится в интервале температур 140 – 180°С, но благодаря соответствующим добавкам кислот некоторые резолы можно отвердить уже при 25°С и выше.
Резолы получают в спиртовых средах, применяя избыток формальдегида. Продукт содержит гидроксиметиленовые группы. Во время нагревания происходит необратимое упрочнение (реакция образования сетчатой структуры), поэтому резолы прессуют в формах.
Упрочненные феноло-формальдегидные смолы чаще носят название бакелитов. Эта пластмасса хорошо обрабатывается механически инструментами для обработки металла и может подвергаться полированию. Бакелит из ново лака имеет большую термостойкость (100 – 150°С), чем бакелит из резола, но худшие диэлектрические свойства.
Бакелит трудногорюч, а после извлечения из пламени сразу гаснет. Горящий бакелит дает желтый цвет пламени, коптящий в зависимости от вида наполнителя. Остаток, извлеченный из пламени, твердый, разбухший, потрескавшийся и обугленный. В процессе горения выделяются фенол и формальдегид с характерным запахом.
Бакелит стоек к воздействию разбавленных кислот и щелочей, а также большинства органических растворителей. Для склеивания треснутых бакелитовых изделий можно применять нитроцеллюлозные клеи или жидкие фенольные смолы.
Из бакелита изготавливают изделия галантереи (пуговицы, пепельницы), электротехнические элементы (вилки, розетки), корпуса радио- и телефонных и аппаратов, детали стиральных машин, защитные шлемы, корпуса аккумуляторов, плиты, лаки, клеи.
Аминопласты являются термоупрочняемыми пластмассами. К ним относятся карбамидо-формальдегидные смолы и меламино-формальдегидные смолы.
Неупрочненная смола получается при поликонденсации формальдегида с карбамидом (смола карбамидо-формальдегидная) или меламином (смола меламино-формальдегидная). Эти смолы имеют реактивные группы —СН2ОН, которые под влиянием нагрева (или кислотных катализаторов) способны к конденсации, в результате которой смолы упрочняются (приобретают пространственную сетчатую структуру).
Упрочненные аминопласты твердые и жесткие. Их можно полировать и механически обрабатывать инструментами по металлу, они имеют хорошие электроизоляционные свойства, легко окрашиваются.
Теплостойкость упрочненных аминопластов около 100 – 120оС. Образец, внесенный в огонь, начинает гореть не более чем через 1 минуту. Вынутый из пламени, он не гаснет, но горит медленно (в действительности горят наполнители, сама смола негорюча). Огонь имеет желтый цвет (меламиновая смола) или желтый с зеленовато-голубой каймой (карбамидная смола). Остаток после горения растрескавшийся, разбухший и покрыт по краям характерным белым налетом. Во время горения отчетливо чувствуется запах формальдегида и карбамида.
Упрочненные аминопласты стойки к воздействию воды, кислот (в том числе серной и азотной), щелочей и органических растворителей. Для склеивания таких аминопластов можно применять феноло-формальдегидные или карбамидо-формальдегидные клеи.
Из аминопластов изготавливают клеи для дерева, электротехнические детали (розетки, выключатели) и галантерею, тонкие покрытия для украшения, лаки (так называемые печные), пенистые материалы.
Реактопласты с волокнистыми наполнителями представляют собой композиции, состоящие из связующего (смолы) и волокнистого наполнителя в виде очесов хлопка (волокниты), асбеста (асбоволокниты), стекловолокна (стекловолокниты).
Волокниты применяют для изготовления деталей с повышенной устойчивостью к ударным нагрузкам, работающих на изгиб и кручение (втулок, шкивов, маховиков и др.).
Асбоволокниты обладают хорошими фрикционными (тормозными) свойствами и теплостойкостью, но по водостойкости и диэлектрической приницаемости уступают пластмассам с порошковым наполнителем.
Стекловолокниты негорючи, стойки к действию ультрафиолетовых лучей, химически стойки, имеют стабильные размеры. Некоторые марки стекловолокнитов применяются для изготовления силовых электротехнических деталей в машиностроении, а также крупногабаритных изделий простых форм (кузовов автомашин, лодок, корпусов приборов и т. п.). Стекловолокниты имеют высокие физико-механические характеристики и применяются для изготовления деталей высокого класса точности и сложной конфигурации. Стекловолокниты могут работать при температурах от –60 до +200°С, имеют прочность при разрыве 80 – 500 МПа.
В качестве связующих смол волокнитов и стекловолокнитов применяются полиэстеровые и эпоксидные смолы.
Полиэстры (полиэстеровые, или полиэфирные смолы) являются полимерами, полученными из полиосновных кислот и полигидроксильных спиртов путем поликонденсации.
Перед отверждением смола имеет вид густого сиропа золотистого цвета. Отверждение проводят в форме при комнатной температуре после добавления инициатора (обычно перекись бензоила) в количестве около 4 %. Механические свойства отвержденного продукта зависят от строения исходной смолы и способа ее отверждения. Изделие может быть гибким, эластичным или твердым и хрупким. Твердые изделия можно подвергать механической обработке инструментами по дереву, а также полировать.
Термическая стойкость под напряжением отвержденных смол лежит в пределах 55 – 60°С, а без нагрузки превышает 150oС. Образец ламината (полиэстеровая смола со стеклотканью), помещенный в пламя, горит очень плохо. После извлечения из пламени чаще всего гаснет. После сгорания остается обугленный скелет стекловолокна.
Отвержденные полиэстры нерастворимы в органических кислотах, в ацетоне легко растрескиваются.
Из полиэстров, упрочненных стекловолокном, изготавливают спасательные лодки, части автомобилей, мебель, корпуса планеров и вертолетов, гофрированные плиты для крыш, плафоны ламп, мачты для антенн, лыжи и палки, удочки, защитные каски и т. п. В виде текучих смол полиэстры применяют для заливки частей электронной аппаратуры, мумификации анатомических препаратов, изготовления лаков и т. п.
Эпоксидные смолы. Неотвержденные эпоксидные смолы получают реакцией поликонденсации эпоксида (эпихлоргидрина) с дифенилолпропаном (дианом). Процесс отверждения является реакцией суммирования (полиприсоединения), в которой роль отвердителя играет полиамин.
Характерной чертой эпоксидных смол является совершенная прилипаемость почти ко всем пластмассам, к металлам; они имеют хорошие механические и электрические свойства.
Термостойкость под напряжением упрочненных эпидианов лежит в пределах 55 – 120°С в зависимости от вида упрочнителя, а без нагрузки превышает 150°С. Упрочненная эпоксидная смола горит в огне так же, как и полиэстровые ламинаты: она трудно загорается, после чего начинает коптить. В отличие от полиэстра эпоксидная смола сильно пахнет во время горения.
Эпоксидные смолы служат для изготовления лаков, клеев, а также производства ламинатов.
Большую группу реактопластов составляют слоистые пластмассы, которые содержат листовые наполнители, уложенные слоями. В качестве наполнителей для слоистых пластиков используют материалы органического (бумагу, картон, хлопчатобумажные ткани, древесный шпон, ткани из синтетических волокон) и неорганического (асбестовую бумагу, стеклянную ткань, ткань из кварцевых или кремнеземных волокон) происхождения. В зависимости от вида наполнителя различают следующие слоистые пластики: гетинакс, текстолит, стеклотекстолит, древеснослоистые пластики. Связующими при производстве слоистых пластиков служат феноло-формальдегидные, эпоксидные, кремнийорганические и некоторые другие смолы.
Свойства слоистых пластиков зависят от соотношения компонентов (наполнителя и связующего), характера подготовки наполнителя, режимов прессования и термообработки и других технологических факторов. Благодаря слоистому расположению армирующего наполнителя слоистые пластики обладают анизотропией механических, физических и диэлектрических свойств.
Механические свойства слоистых пластиков определяются прежде всего видом используемого наполнителя. Наибольшей механической прочностью обладают слоистые пластики на основе стеклянной ткани или стеклянных жгутов. Эти материалы, а также слоистые пластики на основе асбоволокнистых наполнителей имеют более высокую теплостойкость по сравнению с теплостойкостью пластиков на основе органических наполнителей.
Физические и диэлектрические свойства слоистых пластиков зависят в основном от типа используемого полимерного связующего.
Пластик на основе бумаги – гетинакс – применяют в качестве электро-изоляционного материала, работающего длительно при температурах от –65 до +105°С, а также как конструкционный и декоративный материал. Гетинаксы широко применяют в электрических машинах, трансформаторах (в качестве высоковольтной изоляции) и других аппаратах, при производстве телефонной арматуры, в радиотехнике (для изготовления печатных схем). Из гетинакса изготавливают панели, щитки, прокладки, крышки, шайбы, малонагруженные изделия и т. д.
Древесно-слоистые пластики (ДСП) используют при изготовлении мебели, для внутренней облицовки пассажирских поездов, судов, самолетов, при строительстве – в качестве облицовочного материала.
ДСП обычно изготавливают в форме плит или тонких листов. Их получают горячим прессованием лущеного древесного шпона, пропитанного полимерным связующим. При производстве ДСП чаще используют березовый или буковый шпон, в качестве связующего используют водно-спиртовые растворы олигомеров. Древесно-слоистые пластики выпускают различных марок и маркируют ДСП-А, ДСП-Б, ДСП-В и т. д. Они различаются направлением волокон шпона в различных слоях. В ДСП-А – во всех слоях волокна шпона расположены параллельно (иногда четыре слоя с параллельным расположением волокон чередуются с одним слоем, повернутым на 20 – 25°). В ДСП-Б расположение слоев смешанное. Через каждые 5 – 20 слоев с параллельным расположением волокон укладывают слой, повернутый на 90°. В ДСП-В осуществляется звездообразная укладка слоев, при которой соседние слои волокон смещают на 30°. Максимальной прочностью в продольном направлении ( = 280 МПа) обладает ДСП-А. ДСП-Б имеет прочность, одинаковую во взаимно перпендикулярных направлениях (140 МПа).
ДСП обладают хорошими антифрикционными свойствами. В некоторых случаях они заменяют высокооловянистую бронзу, баббит, текстолит. Химическая стойкость ДСП не очень высока, но выше, чем у обычной древесины. Теплостойкость ДСП достигает 140°С. Их недостатком является набухание, обусловленное поглощением воды.
Пластики на основе хлопчатобумажных тканей – текстолиты – применяют для изготовления различных конструкционных деталей, электроизоляционного материала, вкладышей подшипников прокатного оборудования, прокладок, герметизирующих фланцевые соединения. Текстолитовые детали могут работать не только в воздушной среде, но и в масле, керосине или бензине и т. д. Текстолит производят в виде листов, плит, стержней и трубок. Температура эксплуатации изделий из текстолита от –60 до +60°С.
Стеклотекстолитами называют слоистые пластики на основе тканых стекловолокнистых материалов. Они характеризуются высокой тепло- и хладостойкостью, стойкостью к действию окислителей и других химически активных реагентов, высокими механическими свойствами. Стеклотекстолиты применяют для изготовления крупногабаритных изделий, радиотехнических и электроизоляционных деталей, длительное время работающих при температуре 200°С и кратковременно – при 250оС. Стеклопластики являются конструкционными материалами, применяемыми для изготовления силовых изделий в различных отраслях техники (несущих деталей летательных аппаратов, кузовов и кабин машин, железнодорожных вагонов, корпусов лодок, судов и т. п.).
В таблице 15.3 приведены свойства, области применения и интервал рабочих температур некоторых термореактивных пластмасс.
- ← Раздел 15.4
- Раздел 16 →