Плотность металлов
Таблица плотности ρ материалов г/см3 (кг/дм3) и коэффициентов К = ρ/7.85*
* Согласно данным справочника П.М. Поливанов, Е.П. Поливанова. Таблицы для расчета массы деталей и материалов: Справочник. 13-е издание, 2006 г. (переработанное в соответсвие с ГОСТами).
Наименование группы | Наименование материала, марка | ρ | К |
ЧИСТЫЕ МЕТАЛЛЫ | |||
Чистые металлы | Алюминий | 2,7 | 0,34 |
Бериллий | 1,84 | 0,23 | |
Ванадий | 6,5-7,1 | 0,83-0,90 | |
Висмут | 9,8 | 1,24 | |
Вольфрам | 19,3 | 2,45 | |
Галлий | 5,91 | 0,75 | |
Гафний | 13,09 | 1,66 | |
Германий | 5,33 | 0,68 | |
Золото | 19,32 | 2,45 | |
Индий | 7,36 | 0,93 | |
Иридий | 22,4 | 2,84 | |
Кадмий | 8,64 | 1,10 | |
Кобальт | 8,9 | 1,13 | |
Кремний | 2,55 | 0,32 | |
Литий | 0,53 | 0,07 | |
Магний | 1,74 | 0,22 | |
Медь | 8,94 | 1,14 | |
Молибден | 10,3 | 1,31 | |
Марганец | 7,2-7,4 | 0,91-0,94 | |
Натрий | 0,97 | 0,12 | |
Никель | 8,9 | 1,13 | |
Олово | 7,3 | 0,93 | |
Палладий | 12,0 | 1,52 | |
Платина | 21,2-21,5 | 2,69-2,73 | |
Рений | 21,0 | 2,67 | |
Родий | 12,48 | 1,58 | |
Ртуть | 13,6 | 1,73 | |
Рубидий | 1,52 | 0,19 | |
Рутений | 12,45 | 1,58 | |
Свинец | 11,37 | 1,44 | |
Серебро | 10,5 | 1,33 | |
Талий | 11,85 | 1,50 | |
Тантал | 16,6 | 2,11 | |
Теллур | 6,25 | 0,79 | |
Титан | 4,5 | 0,57 | |
Хром | 7,14 | 0,91 | |
Цинк | 7,13 | 0,91 | |
Цирконий | 6,53 | 0,82 | |
СПЛАВЫ ИЗ ЦВЕТНЫХ МЕТАЛЛОВ | |||
Алюминиевые сплавы литейные | АЛ1 | 2,75 | 0,35 |
АЛ2 | 2,65 | 0,34 | |
АЛ3 | 2,70 | 0,34 | |
АЛ4 | 2,65 | 0,34 | |
АЛ5 | 2,68 | 0,34 | |
АЛ7 | 2,80 | 0,36 | |
АЛ8 | 2,55 | 0,32 | |
АЛ9 (АК7ч) | 2,66 | 0,34 | |
АЛ11 (АК7Ц9) | 2,94 | 0,37 | |
АЛ13 (АМг5К) | 2,60 | 0,33 | |
АЛ19 (АМ5) | 2,78 | 0,35 | |
АЛ21 | 2,83 | 0,36 | |
АЛ22 (АМг11) | 2,50 | 0,32 | |
АЛ24 (АЦ4Мг) | 2,74 | 0,35 | |
АЛ25 | 2,72 | 0,35 | |
Баббиты оловянные и свинцовые | Б88 | 7,35 | 0,93 |
Б83 | 7,38 | 0,94 | |
Б83С | 7,40 | 0,94 | |
БН | 9,50 | 1,21 | |
Б16 | 9,29 | 1,18 | |
БС6 | 10,05 | 1,29 | |
Бронзы безоловянные, литейные | БрАмц9-2Л | 7,6 | 0,97 |
БрАЖ9-4Л | 7,6 | 0,97 | |
БрАМЖ10-4-4Л | 7,6 | 0,97 | |
БрС30 | 9,4 | 1,19 | |
Бронзы безоловянные, обрабатываемые давлением | БрА5 | 8,2 | 1,04 |
БрА7 | 7,8 | 0,99 | |
БрАмц9-2 | 7,6 | 0,97 | |
БрАЖ9-4 | 7,6 | 0,97 | |
БрАЖМц10-3-1,5 | 7,5 | 0,95 | |
БрАЖН10-4-4 | 7,5 | 0,95 | |
БрБ2 | 8,2 | 1,04 | |
БрБНТ1,7 | 8,2 | 1,04 | |
БрБНТ1,9 | 8,2 | 1,04 | |
БрКМц3-1 | 8,4 | 1,07 | |
БрКН1-3 | 8,6 | 1,09 | |
БрМц5 | 8,6 | 1,09 | |
Бронзы оловянные деформируемые | БрОФ8-0,3 | 8,6 | 1,09 |
БрОФ7-0,2 | 8,6 | 1,09 | |
БрОФ6,5-0,4 | 8,7 | 1,11 | |
БрОФ6,5-0,15 | 8,8 | 1,12 | |
БрОФ4-0,25 | 8,9 | 1,13 | |
БрОЦ4-3 | 8,8 | 1,12 | |
БрОЦС4-4-2,5 | 8,9 | 1,13 | |
БрОЦС4-4-4 | 9,1 | 1,16 | |
Бронзы оловянные литейные | БрО3Ц7С5Н1 | 8,84 | 1,12 |
БрО3Ц12С5 | 8,69 | 1,10 | |
БрО5Ц5С5 | 8,84 | 1,12 | |
БрО4Ц4С17 | 9,0 | 1,14 | |
БрО4Ц7С5 | 8,70 | 1,10 | |
Бронзы бериллиевые | БрБ2 | 8,2 | 1,04 |
БрБНТ1,9 | 8,2 | 1,04 | |
БрБНТ1,7 | 8,2 | 1,04 | |
Медно- цинковые сплавы (латуни) литейные | ЛЦ16К4 | 8,3 | 1,05 |
ЛЦ14К3С3 | 8,6 | 1,09 | |
ЛЦ23А6Ж3Мц2 | 8,5 | 1,08 | |
ЛЦ30А3 | 8,5 | 1,08 | |
ЛЦ38Мц2С2 | 8,5 | 1,08 | |
ЛЦ40С | 8,5 | 1,08 | |
ЛС40д | 8,5 | 1,08 | |
ЛЦ37Мц2С2К | 8,5 | 1,08 | |
ЛЦ40Мц3Ж | 8,5 | 1,08 | |
Медно- цинковые сплавы (латуни), обрабатываемые давлением | Л96 | 8,85 | 1,12 |
Л90 | 8,78 | 1,12 | |
Л85 | 8,75 | 1,11 | |
Л80 | 8,66 | 1,10 | |
Л70 | 8,61 | 1,09 | |
Л68 | 8,60 | 1,09 | |
Л63 | 8,44 | 1,07 | |
Л60 | 8,40 | 1,07 | |
ЛА77-2 | 8,60 | 1,09 | |
ЛАЖ60-1-1 | 8,20 | 1,04 | |
ЛАН59-3-2 | 8,40 | 1,07 | |
ЛЖМц59-1-1 | 8,50 | 1,08 | |
ЛН65-5 | 8,60 | 1,09 | |
ЛМц58-2 | 8,40 | 1,07 | |
ЛМцА57-3-1 | 8,10 | 1,03 | |
Латунные прутки прессованные и тянутые | Л60, Л63 | 8,40 | 1,07 |
ЛС59-1 | 8,45 | 1,07 | |
ЛЖС58-1-1 | 8,45 | 1,07 | |
ЛС63-3, ЛМц58-2 | 8,50 | 1,08 | |
ЛЖМц59-1-1 | 8,50 | 1,08 | |
ЛАЖ60-1-1 | 8,20 | 1,04 | |
Магниевые сплавы литейные | Мл3 | 1,78 | 0,23 |
Мл4 | 1,83 | 0,23 | |
Мл5 | 1,81 | 0,23 | |
Мл6 | 1,76 | 0,22 | |
Мл10 | 1,78 | 0,23 | |
Мл11 | 1,80 | 0,23 | |
Мл12 | 1,81 | 0,23 | |
Магниевые сплавы деформируемые | МА1 | 1,76 | 0,22 |
МА2 | 1,78 | 0,23 | |
МА2-1 | 1,79 | 0,23 | |
МА5 | 1,82 | 0,23 | |
МА8 | 1,78 | 0,23 | |
МА14 | 1,80 | 0,23 | |
Медно-никелевые сплавы, обрабатываемые давлением | Копель МНМц43-0,5 | 8,9 | 1,13 |
Константан МНМц40-1,5 | 8,9 | 1,13 | |
Мельхиор МнЖМц30-1-1 | 8,9 | 1,13 | |
Сплав МНЖ5-1 | 8,7 | 1,11 | |
Мельхиор МН19 | 8,9 | 1,13 | |
Сплав ТБ МН16 | 9,02 | 1,15 | |
Нейзильбер МНЦ15-20 | 8,7 | 1,11 | |
Куниаль А МНА13-3 | 8,5 | 1,08 | |
Куниаль Б МНА6-1,5 | 8,7 | 1,11 | |
Манганин МНМц3-12 | 8,4 | 1,07 | |
Никелевые сплавы | НК 0,2 | 8,9 | 1,13 |
НМц2,5 | 8,9 | 1,13 | |
НМц5 | 8,8 | 1,12 | |
Алюмель НМцАК2-2-1 | 8,5 | 1,08 | |
Хромель Т НХ9,5 | 8,7 | 1,11 | |
Монель НМЖМц28-2,5-1,5 | 8,8 | 1,12 | |
Цинковые сплавы антифрикционные | ЦАМ 9-1,5Л | 6,2 | 0,79 |
ЦАМ 9-1,5 | 6,2 | 0,79 | |
ЦАМ 10-5Л | 6,3 | 0,80 | |
ЦАМ 10-5 | 6,3 | 0,80 | |
СТАЛЬ, СТРУЖКА, ЧУГУН | |||
Нержавеющая сталь | 04Х18Н10 | 7,90 | 1,00 |
08Х13 | 7,70 | 0,98 | |
08Х17Т | 7,70 | 0,98 | |
08Х20Н14С2 | 7,70 | 0,98 | |
08Х18Н10 | 7,90 | 1,00 | |
08Х18Н10Т | 7,90 | 1,00 | |
08Х18Н12Т | 7,95 | 1,01 | |
08Х17Н15М3Т | 8,10 | 1,03 | |
08Х22Н6Т | 7,60 | 0,97 | |
08Х18Н12Б | 7,90 | 1,00 | |
10Х17Н13М2Т | 8,00 | 1,02 | |
10Х23Н18 | 7,95 | 1,01 | |
12Х13 | 7,70 | 0,98 | |
12Х17 | 7,70 | 0,98 | |
12Х18Н10Т | 7,90 | 1,01 | |
12Х18Н12Т | 7,90 | 1,00 | |
12Х18Н9 | 7,90 | 1,00 | |
15Х25Т | 7,60 | 0,97 | |
Сталь конструкционная | Сталь конструкционная | 7,85 | 1,0 |
Стальное литье | Стальное литьё | 7,80 | 0,99 |
Сталь быстрорежущая с содержанием вольфрама, % | 5 | 8,10 | 1,03 |
10 | 8,35 | 1,06 | |
15 | 8,60 | 1,09 | |
18 | 8,90 | 1,13 | |
Стружка (т/м3) | алюминиевая мелкая дроблёная | 0,70 | |
стальная (мелкий вьюн) | 0,55 | ||
стальная (крупный вьюн) | 0,25 | ||
чугунная | 2,00 | ||
Чугун | серый | 7,0-7,2 | 0,89-0,91 |
ковкий и высокопрочный | 7,2-7,4 | 0,91-0,94 | |
антифрикционный | 7,4-7,6 | 0,94-0,97 |
Таблица удельного веса германия
Так как, германий является сложным материалом, рассчитать его удельный вес в полевых условиях самостоятельно не представляется возможным. Эти вычисления проводят в специальных химических лабораториях. Однако, при этом средний удельный вес германия известен и равен 5,35 г/см3.
Для упрощения подсчетов ниже представлена таблица с значениями удельного веса германия, а также такого параметра, как вес германия в зависимости от единиц исчисления.
Удельный вес и вес 1 м3 германия в зависимости от единиц измерения
Материал | Удельный вес (г/см3) | Вес 1 м3 (кг) |
Германий | 5,35 | 5350 |
Металлы, похожие с золотом по удельному весу
Схожей к золоту плотностью обладают и некоторые другие металлы. В частности, вольфрам и уран. Уран не смогут выдать за благородный золотой металл по следующим основным причинам:
- высокая радиоактивность;
- труднодоступность.
У фальсификаторов больше возможностей при работе с вольфрамом. Но этот металл существенно отличается от золота по цвету и твердости. Фальшивомонетчики несмотря на это нашли выход. Вольфрамовые слитки они покрывают расплавленным золотом.
Кроме этого, вольфрам часто используется и при производстве позолоченных украшений. По внешнему виду они очень схожи с настоящими золотыми изделиями, однако стоимость и износостойкость отличают их от золотых драгоценностей.
Золотое напыление наносят и на изделия из свинца, структура которого гораздо мягче. Неверным является распространенное мнение о том, что удельный вес позволит отличить свинцовую подделку от настоящего золотого металла. Это заблуждение, поскольку в чистом виде на изготовление украшений золото не применяется.
Нередко в продаже можно встретить золотые ювелирные украшения, имеющие необычные цвета. Зачастую – это обыкновенные напыления. Если изделие выполнено из сплава, то цена его будет гораздо выше. Например, бывает золото синего, розового, черного, фиолетового и других оттенков. Они получаются за счет включения в лигатуру прочих соединений.
Сегодня недобросовестные ювелиры не стесняются выдавать за благородное золото другие металлы. Чтобы не приобрести подделку, обращаться нужно только в специализированные магазины, имеющие соответствующие сертификаты и лицензии.
О какой физической характеристике пойдет речь?
Плотность представляет собой величину, которая характеризует количество вещества, находящегося в известном объеме. Согласно этому определению, ее можно математически вычислить так:
ρ = m/V.
Обозначают эту величину греческой буквой ρ (ро).
Плотность является универсальной характеристикой, поскольку по ней можно сравнивать разные материалы. Этот факт можно использовать для их идентификации, что и сделал греческий философ Архимед, согласно легенде (он смог установить подделку золотой короны, измерив величину ρ для нее).
Этот параметр для конкретного материала зависит от двух основных факторов:
- от массы составляющих вещество атомов и молекул;
- от средних межатомных и межмолекулярных расстояний.
Например, любой из переходных металлов (золото, железо, ванадий, вольфрам) имеет большую плотность, чем любой углеродный материал, поскольку масса атома последнего в десятки раз меньше. Другой пример. Графит и алмаз — это две углеродные структуры. Второй является более плотным, поскольку межатомные расстояния в его решетке меньше.
Определение массы изделия
Все современные справочные материалы, ГОСТ и технические условия предприятий скорректированы в соответствии с международной классификацией.
Пользуясь справочными таблицами плотностей различных материалов, легко определить их массу. Это особенно актуально, когда предметы тяжёлые или отсутствуют соответствующие весы. Для этого требуется знать их геометрические параметры. Чаще всего узнать требуется массу предмета в форме цилиндра, трубы или параллелепипеда:
Металлические прутки имеют форму цилиндра. Зная диаметр и длину, легко узнать массу. Масса равна плотности, умноженной на объём. Находим объём предмета. Он получается умножением площади сечения на длину. Площадь круга, зная диаметр, определить несложно. Диаметр в квадрате умножается на 3,14 (число пи), делится на 4.- Массу трубы получаем аналогично. При нахождении площади берём разницу между внешним и внутренним диаметром сечения.
- Чтобы определить массу листа, блюма, сляба или прутка прямоугольного сечения, определяем объём, перемножая длину, высоту и толщину. Умножаем на плотность из справочника.
При таких вычислениях всегда допускается маленькая погрешность, ведь формы не идеальны. На практике ей можно пренебречь. Производители металлоизделий разработали специальные калькуляторы вычисления массы для пользователей. Достаточно ввести уникальные размеры в соответствующие окна и получить результат.
Свойства жидких металлов
В таблице представлены теплофизические свойства жидких металлов в зависимости от температуры в диапазоне от 0 до 800°С. Даны следующие свойства: плотность металлов, теплопроводность, удельная (массовая) теплоемкость, температуропроводность, кинематическая вязкость, число Прандтля.
Свойства указаны для таких жидких металлов и сплавов, как ртуть Hg, олово Sn, висмут Bi, свинец Pb, сплав висмут-свинец Bi-Pb, литий Li, натрий Na, калий K, сплав натрий-калий Na-K. Для каждого металла и сплава также указана его температура плавления и кипения.
Плотность жидких металлов, представленных в таблице, значительно различается. Металлом с минимальной плотностью является литий (литий — самый легкий металл среди существующих) — его плотность в жидком состоянии при температуре 200°С равна 515 кг/м3. Наиболее тяжелый из рассмотренных жидких металлов — это ртуть. Плотность ртути при 0°С равна 13590 кг/м3. Следует отметить, что плотность жидких металлов уменьшается при нагревании.
Теплопроводность жидких металлов увеличивается при повышении их температуры (за исключением натрия и калия, теплопроводность которых имеет обратную зависимость). Наиболее теплопроводный жидкий металл — это натрий. Теплопроводность жидкого натрия имеет величину 60…86 Вт/(м·град). В целом, щелочные металлы (литий, натрий и калий) обладают высокой теплопроводностью по сравнению с другими жидкими металлами.
Кинематическая вязкость и число Прандтля жидких металлов уменьшаются при нагревании. Теплоемкость и температуропроводность этих металлов — растет. Однако, удельная теплоемкость таких жидких металлов, как свинец, олово, висмут и сплава свинец-висмут не зависит от температуры и является постоянной величиной.
Как находят величину?
Плотность металлов — это характеристика, которую можно определить двумя принципиально разными способами:
- экспериментальным;
- теоретическим.
Экспериментальные методы бывают следующего вида:
- Непосредственные измерения веса тела и его объема. Последний легко вычислить, если известны геометрические параметры тела, а его форма является идеальной, например, призмой, пирамидой или шаром.
- Гидростатические измерения. В этом случае используются специальные весы, изобретенные еще Галилеем в XVI веке. Принцип их действия достаточно прост: сначала взвешивают тело неизвестной плотности в воздухе, а затем — в жидкости (воде). После этого по простой формуле вычисляют искомую величину.
Что касается теоретического способа определения плотности металлов — это достаточно простой метод, который требует знания типа кристаллической решетки, межатомного расстояния в ней и массы атома. Далее покажем на примере осмия, как этот метод применяют.