Петля магнитного гистерезиса. Основные свойства и параметры магнитных материалов

В сердечнике любого электромагнита после выключения тока всегда сохраняется часть магнитных свойств, называемая остаточным магнетизмом. Величина остаточного магнетизма зависит от свойств материала сердечника и достигает большего значения у закаленной стали и меньшего у мягкого железа.

Однако, как бы ни было мягко железо, остаточный магнетизм все же будет оказывать известное влияние в том случае, если по условиям работы прибора необходимо перемагничивание его сердечника, т. е. размагничивание до нуля и намагничивание в противоположном направлении.

Действительно, при всяком изменении направления тока в обмотке электромагнита необходимо (благодаря наличию в сердечнике остаточного магнетизма) сначала размагнитить сердечник, и только после этого он может быть намагничен в новом направлении. Для этого потребуется какой-то магнитный поток противоположного направления.

Иначе говоря, изменение намагничивания сердечника (магнитной индукции) всегда отстает от соответствующих изменений магнитного потока (напряженности магнитного поля), создаваемого обмоткой.

Это отставание магнитной индукции от напряженности магнитного поля носит название гистерезиса . При каждом новом намагничивании сердечника для уничтожения его остаточного магнетизма приходится действовать на сердечник магнитным потоком противоположного направления.

Практически это будет означать затрату какой-то части электрической энергии на преодоление коэрцитивной силы, затрудняющей поворот молекулярных магнитиков в новое положение. Затраченная на это энергия выделяется в железе в виде тепла и представляет потери на перемагничивание, или, как говорят, потери на гистерезис .

Исходя из сказанного, железо, подверженное в том или ином приборе непрерывному перемагничиванию (сердечники якорей генераторов и электродвигателей , сердечники трансформаторов), должно выбираться всегда мягкое, с очень небольшой коэрцитивной силой. Это дает возможность уменьшить потери на гистерезис и тем самым повысить коэффициент полезного действия электрической машины или прибора.

Петля гистерезиса — кривая, изображающая ход зависимости намагничивания от напряженности внешнего поля. Чем больше площадь петли, тем большую работу на перемагничивание надо затратить.

Представим себе простой электромагнит с железным сердечником. Проведем его через полный цикл намагничивания, для чего будем менять намагничивающий ток от нуля до величины ОМ в обоях направлениях.

Начальный момент: сила тока равна нулю, железо не намагничено, магнитная индукция В=0.

1-ая часть: намагничивание изменением тока от 0 до величины — + ОМ. Индукция в железе сердечника будет возрастать сначала быстро, затем медленнее. К концу операции, в точке А железо так насыщено магнитными силовыми линиями, что дальнейшее усиление тока (свыше + ОМ) может дать самые незначительные результаты, почему операцию намагничивания можно считать законченной.

Намагничивание до насыщения означает, что имеющиеся в сердечнике молекулярные магниты, находящиеся в начале процесса намагничивания в полном, а затем лишь в частичном беспорядке, почти все расположились теперь стройными рядами, северными полюсами в одну сторону, южными в другую, почему на одном конце сердечника мы имеем теперь северную полярность, на другом — южную.

2-я часть: ослабление магнетизма вследствие уменьшения тока от + ОМ до 0 и полное размагничивание при токе — OD. Магнитная индукция, изменяясь по кривой АС, дойдет до значения ОС, в то время как ток уже будет равен нулю. Эту магнитную индукцию называют остаточным магнетизмом, или остаточной магнитной индукцией. Для уничтожения ее, для полного, следовательно, размагничивания, необходимо дать в электромагнит ток обратного направления и довести его до значения, соответствующего на чертеже ординате OD.

3-я часть: намагничивание в обратную сторону путем изменения тока от — OD до — ОМ1. Магнитная индукция, возрастая по кривой DE, дойдет до точки Е, соответствующей моменту насыщении.

4-я часть: ослабление магнетизма постепенным уменьшением тока от — ОМ1, до нуля (остаточный магнетизм OF) и последующее размагничивание путем перемены направления тока и доведения его до величины + ОН.

5-я часть: намагничивание, соответствующее процессу 1-й части, доведение магнитной индукции от нуля до + МА путем изменении тока от + ОН до + ОМ.

П ри уменьшении размагничивающего тока до нуля не все элементарные или молекулярные магниты приходят в прежнее беспорядочное состояние, но часть их сохраняет свое положение, соответствующее последнему направлению намагничивания. Это явление запаздывания или задерживания магнетизма и носит название гистерезиса.

Источник: electricalschool.info

Общие понятия гистерезиса

Гистерезис можно наблюдать в те моменты, когда какое-либо тело в конкретный период времени будет находиться в зависимости от внешних условий. Данное состояние тела рассматривается и в предыдущее время, после чего производится сравнение и выводится определенная зависимость.

Подобная зависимость хорошо просматривается на примере человеческого тела. Чтобы изменить его состояние потребуется какой-то отрезок времени на релаксацию. Поэтому реакция тела будет всегда отставать от причин, вызвавших измененное состояние. Данное отставание значительно уменьшается, если изменение внешних условий также будет заме для ться. Тем не менее, в некоторых случаях может не произойти уменьшения отставаний. В результате, возникает неоднозначная зависимость величин, известная как гистерезисная, а само явление называется гистерезисом.

Эта физическая величина может встречаться в самых разных веществах и процессах, однако чаще всего рассматриваются понятия диэлектрического, магнитного и упругого гистерезиса. Магнитный гистерезис как правило появляется в магнитных веществах, например, таких как ферромагнетики. Характерной особенностью этих материалов является самопроизвольная или спонтанная неоднородная намагниченность, наглядно демонстрирующая это физическое явление.

Механизм возникновения петли гистерезиса

Сам по себе гистерезис представляет собой кривую, отображающую измененный магнитный момент вещества, на которое воздействует периодически изменяющаяся напряженность поля. Когда магнитное поле воздействует на ферромагнетики, то изменение их магнитного момента наступает не сразу, а с определенной задержкой.

В каждом ферромагнетике изначально присутствует самопроизвольная намагниченность. Сам материал включает в свой состав отдельные фрагменты, каждый из которых обладает собственным магнитным моментом. При направленности этих моментов в разные стороны, значение суммарного момента оказывается равным нулю в результате взаимной компенсации.

Если на ферромагнетик оказать воздействие магнитным полем, то все моменты, присутствующие в отдельных фрагментах (доменах) будут развернуты вдоль внешнего поля. В итоге, в материале образуется некоторый общий момент, направленный в одну сторону. Если внешнее действие поля прекращается, то домены не все окажутся в изначальном положении. Для этого потребуется воздействие достаточно сильного магнитного поля, предназначенного для разворота доменов. Такому развороту создают препятствия наличие примесей и неоднородность материала. Поэтому материал имеет некоторую остаточную намагниченность, даже при отключенном внешнем поле.

Кривая намагничивания

Кривая намагничивания. Это важнейшая характеристика магнитных материалов, она показывает зависимость намагниченности или магнитной индукции материала от напряженности внешнего поля Н. Магнитная индукция материала Bi измеряется в теслах (Тл) и связана с намагниченностью. Основная (коммутационная) кривая намагничивания представляет собой геометрическое место вершин петель гистерезиса, полученных при циклическом перемагничивании и отражает изменение магнитной индукции В в зависимости от напряженности магнитного поля Н, которое создается в материале при намагничивании. Напряженность магнитного поля в образце в виде тороида, когда магнитная цепь замкнута, равна напряженности внешнего поля Нв. В разомкнутой магнитной цепи на концах образца появляются магнитные полюса, создающие размагничивающее поле Нр. Разница между магнитными напряженностями внешнего и размагничивающего полей определяют внутреннюю магнитную напряженность Hi материала. Основная кривая намагничивания имеет ряд характерных участков, которые можно условно выделить при намагничивании монокристалла ферромагнетика. Первый участок кривой намагничивания соответствует процессу смещения границ менее благоприятно ориентированных доменов. На втором участке происходит поворот векторов намагниченности доменов в направлении внешнего магнитного поля. Третий участок соответствует парапроцессу, т.е. завершающему этапу процесса намагничивания, когда сильное магнитное поле поворачивает в направлении своего действия не сориентированные магнитные моменты доменов ферромагнетика.

Гистерезис происходит от греческого слова, означающего запаздывание или отставание. С данным понятием связана такая физическая величина, как петля гистерезиса, определяющая одну из характеристик тела. Она определенным образом связана также и с физическими величинами, характеризующими внешние условия, такие как магнитное поле.

Описание явления магнитного гистерезиса

Мы знаем, что магнитный поток, создаваемый электромагнитной катушкой, представляет собой величину магнитного поля или силовых линий, создаваемых в данной области, и что его чаще называют «плотностью потока», обозначенным символ B с единицей измерения Тесла, Т.

Мы также знаем из предыдущих уроков, что магнитная сила электромагнита зависит от числа витков катушки, тока, протекающего через катушку, или от типа используемого материала сердечника, и если мы увеличим либо ток, либо число оказывается, мы можем увеличить напряженность магнитного поля H.

Ранее относительная проницаемость, символ µ r, определялась как отношение абсолютной проницаемости µ и проницаемости свободного пространства µ o(вакуум), и это задавалось как постоянная величина. Однако взаимосвязь между плотностью потока B и напряженностью магнитного поля H может быть определена тем фактом, что относительная проницаемость µ r не является постоянной величиной, а функцией интенсивности магнитного поля, что дает плотность магнитного потока как: B = M H .

Тогда плотность магнитного потока в материале будет увеличена в большей степени в результате его относительной проницаемости для материала по сравнению с плотностью магнитного потока в вакууме, µ o H, а для катушки с воздушной сердцевиной это соотношение определяется как:

Таким образом, для ферромагнитных материалов отношение плотности потока к напряженности поля ( B / H ) не является постоянным, а изменяется в зависимости от плотности потока. Тем не менее, для катушек с воздушной сердцевиной или любой сердцевины с немагнитной средой, такой как дерево или пластмасса, это отношение можно считать постоянной величиной, и эта постоянная известна как μ o , проницаемость свободного пространства ( μ o= 4.π.10 -7 ч / м ).

Построив значения плотности потока ( B ) против напряженности поля, ( Н ) мы можем произвести набор кривых , называемых Кривые намагничивания, кривые магнитного гистерезиса или более обычно BH кривые для каждого типа основного используемого материала.

Однодоменные ферромагнетики

В том случае, если частицы имеют различный размер, протекает процесс вращения. Происходит это по причине того, что образование новых доменов невыгодно с энергетической точки зрения. Но процессу вращения частиц мешает анизотропия (магнитная). Она может иметь разное происхождение – образовываться в самом кристалле, возникать вследствие упругого напряжения и т. д.). Но именно при помощи этой анизотропии намагниченность удерживается внутренним полем. Его еще называют эффективным полем магнитной анизотропии. И гистерезис магнитный возникает вследствие того, что намагниченность изменяется в двух направлениях – прямом и обратном. Во время перемагничивания однодоменных ферромагнетиков происходит несколько скачков. Вектор намагниченности М разворачивается в сторону поля Н. Причем поворот может быть однородным или неоднородным.

Намагниченность или кривая B-H

Набор кривых намагничивания выше, представляет пример взаимосвязи между B и H для сердечников из мягкого железа и стали, но каждый тип материала сердечника будет иметь свой собственный набор кривых магнитного гистерезиса. Вы можете заметить, что плотность потока увеличивается пропорционально напряженности поля до тех пор, пока она не достигнет определенного значения, если оно больше не может становиться почти равным и постоянным, поскольку напряженность поля продолжает увеличиваться.

Это связано с тем, что существует ограничение на количество плотности потока, которое может генерироваться ядром, поскольку все домены в железе идеально выровнены. Любое дальнейшее увеличение не будет влиять на значение M , и точка на графике, где плотность потока достигает своего предела, называется магнитным насыщением, также известным как насыщение сердечника, и в нашем простом примере выше точки насыщения стальной кривой начинается примерно с 3000 ампер-витков на метр.

Насыщение происходит потому, что, как мы помним из предыдущей статьи по магнетизму, который включал теорию Вебера, случайное расположение структуры молекулы в материале ядра изменяется, когда крошечные молекулярные магниты в материале становятся «выстроенными».

По мере увеличения напряженности магнитного поля ( H ) эти молекулярные магниты становятся все более и более выровненными, пока они не достигнут идеального выравнивания, создавая максимальную плотность потока, и любое увеличение напряженности магнитного поля из-за увеличения электрического тока, протекающего через катушку, будет иметь мало или вообще не будет иметь эффекта.

Другие свойства

Кроме магнитного гистерезиса, также различают гальвономагнитный и магнитострикционный эффекты

. В этих процессах наблюдается изменение электрического сопротивления за счет механической деформации материала. Сегнетоэлектрики под действием деформационных сил способны вырабатывать электрический ток, что объясняется пьезоэлектрическим гистерезисом. Также существует понятие электрооптического и двойного диэлектрического гистерезиса. Последний процесс имеет обычно наибольший интерес, так как сопровождается двойным графиком в зонах, приближающихся к точкам насыщения.

Гистерезис определение относится не только к ферромагнетикам, применяемым в электронике. Такой процесс может происходить и в термодинамике

. Например, при организации отопления от газового или электрического котла. Регулирующим компонентом в системе является терморегулятор. Но только контролируемой величиной является температура воды в системе.

При ее снижении до заданного уровня котел включается, начиная подогрев до заданной величины. После чего выключается и процесс повторяется в цикле. Если снять показания температуры при нагреве и остывании системы при каждом цикле включения и выключения отопления, то получиться график в виде петли гистерезиса, который и получил название гистерезис котла.

В таких системах гистерезис выражается в температуре

. Например, если он составляет 4°С, а температура теплоносителя установлена 18°С, то котел выключится, когда она достигнет значения 22°С. Таким образом, можно настроить любой приемлемый температурный режим в помещениях. А терморегулятор является, по сути, датчиком температуры или термостатом, который включает или выключает отопления при достижении нижнего и верхнего порога, соответственно.

Чтобы лучше понять, что такое магнитный гистерезис, нужно разобраться, где и при каких условиях он возникает.

Сохраняемость (способность сохранять остаточный магнетизм)

Предположим, что у нас есть электромагнитная катушка с высокой напряженностью поля из-за тока, протекающего через нее, и что материал ферромагнитного сердечника достиг своей точки насыщения, максимальной плотности потока. Если мы теперь откроем переключатель и удалим ток намагничивания, протекающий через катушку, мы ожидаем, что магнитное поле вокруг катушки исчезнет, ​​когда магнитный поток уменьшится до нуля.

Однако магнитный поток не исчезает полностью, поскольку материал электромагнитного сердечника все еще сохраняет часть своего магнетизма, даже когда ток прекращает течь в катушке. Эта способность к катушке, чтобы сохранить часть своего магнетизма внутри сердечника после процесса намагничивания остановилось называются сохраняемость или остаточной намагниченности, в то время как величина плотности потока все еще остается в ядре, называется остаточным магнетизмом B R .

Причиной этого является то, что некоторые из крошечных молекулярных магнитов не возвращаются к совершенно случайному образцу и все же указывают в направлении исходного поля намагничивания, давая им своего рода «память». Некоторые ферромагнитные материалы обладают высокой удельной удерживаемостью (магнитной твердостью), что делает их превосходными для изготовления постоянных магнитов.

В то время как другие ферромагнитные материалы имеют низкую способность удерживать (магнитно-мягкие), что делает их идеальными для использования в электромагнитах, соленоидах или реле. Один из способов уменьшить эту остаточную плотность потока до нуля — изменить направление тока, протекающего через катушку, путем изменения значения H, напряженности магнитного поля, отрицательной. Этот эффект называется коэрцитивной силой H C .

Если этот обратный ток увеличивается еще больше, то плотность потока будет также увеличиваться в обратном направлении, пока ферромагнитный сердечник не достигнет насыщения снова, но в обратном направлении от предыдущего. Снижая ток намагничивания I снова до нуля создаст аналогичную величину остаточного магнетизма, но в обратном направлении.

Затем путем постоянного изменения направления тока намагничивания через катушку с положительного направления на отрицательное направление, как в случае с источником переменного тока, можно создать петлю магнитного гистерезиса ферромагнитного сердечника.

Применение гистерезиса в электротехнике и электронике

Намагниченность материалов и особенности переходных процессов следует учитывать при создании двигателей и трансформаторов. При эксплуатации этого оборудования в цепях переменного тока часть потребляемого электричества необходимо использовать для перемагничивания установленного сердечника. Аналогичные явления наблюдаются при работе коммутационных аппаратов. Изучение гистерезиса помогает увеличить КПД силовых машин и преобразователей напряжения, обеспечить необходимую скорость переключения реле.

На рисунке показана передаточная характеристика триггера Шмидта. Изменение выходного сигнала с определенным запаздыванием применяют для устранения ошибок при передаче информации. Обычный инвертор реагирует на импульсные помехи немедленным переключением. В данном случае временная задержка выполняет полезные функции фильтра. Она помогает корректно воспринимать управляющие сигналы в сложных условиях эксплуатации.

Такие решения применяют в электронике для исключения проблем при дребезге контактов. Расчетное замедление рабочих реакций можно пояснить с помощью типового терморегулятора. Если такое устройство создано без гистерезиса, переключения будут выполняться слишком часто. Однако в реальных условиях (отопление помещения) вполне достаточна точность ±3°C. Увеличив ширину петли, можно установить оптимальный диапазон для поддержания заданного температурного режима.

Магнитная петля гистерезиса

Магнитная петля гистерезиса выше, показывает поведение ферромагнитного сердечника графически в виде соотношения между B и H является нелинейным. Начиная с немагнитного сердечника, и B, и H будут в нуле, точка 0 на кривой намагничивания.

Если ток намагничивания I увеличивается в положительном направлении до некоторого значения, напряженность магнитного поля H линейно увеличивается с I,и плотность потока B также будет увеличиваться, как показано кривой из точки 0 в точку a, когда она движется к насыщению.

Теперь, если ток намагничивания в катушке уменьшается до нуля, магнитное поле, циркулирующее вокруг сердечника, также уменьшается до нуля. Однако магнитный поток катушек не достигнет нуля из-за остаточного магнетизма, присутствующего в сердечнике, и это показано на кривой от точки а к точке b .

Чтобы уменьшить плотность потока в точке b до нуля, необходимо обратить ток, протекающий через катушку. Сила намагничивания, которая должна применяться для обнуления остаточной плотности потока, называется «Коэрцитивной силой». Эта коэрцитивная сила меняет магнитное поле, перестраивая молекулярные магниты, пока ядро ​​не станет немагнитным в точке с .

Увеличение этого обратного тока вызывает намагничивание сердечника в противоположном направлении, и дальнейшее увеличение этого тока намагничивания приведет к тому, что сердечник достигнет своей точки насыщения, но в противоположном направлении, точки d на кривой.

Эта точка симметрична точке b . Если ток намагничивания снова уменьшится до нуля, остаточный намагниченность, присутствующая в сердечнике, будет равна предыдущему значению, но в точке е будет обратной .

Снова изменение направления тока намагничивания, протекающего через катушку на этот раз в положительном направлении, приведет к тому, что магнитный поток достигнет нуля, точка f на кривой, и, как и прежде, дальнейшее увеличение тока намагничивания в положительном направлении приведет к насыщению сердечника в точке а .

Затем кривая B-H следует по пути a-b-c-d-e-f-a, когда ток намагничивания, протекающий через катушку, чередуется между положительным и отрицательным значением, таким как цикл переменного напряжения. Этот путь называется магнитной петлей гистерезиса.

Эффект магнитного гистерезиса показывает, что процесс намагничивания ферромагнитного сердечника и, следовательно, плотность потока зависят от того, на какую часть кривой намагничивается ферромагнитный сердечник, поскольку это зависит от прошлых цепей, придающих сердечнику форму «памяти». Тогда ферромагнитные материалы имеют память, потому что они остаются намагниченными после того, как внешнее магнитное поле было удалено.

Однако мягкие ферромагнитные материалы, такие как железная или кремниевая сталь, имеют очень узкие петли магнитного гистерезиса, что приводит к очень небольшим количествам остаточного магнетизма, что делает их идеальными для использования в реле, соленоидах и трансформаторах, поскольку они могут легко намагничиваться и размагничиваться.

Поскольку для преодоления этого остаточного магнетизма необходимо применять коэрцитивную силу, необходимо выполнить работу по замыканию петли гистерезиса, чтобы используемая энергия рассеивалась в виде тепла в магнитном материале. Это тепло известно как потеря гистерезиса, величина потери зависит от значения материала коэрцитивной силы.

Добавляя добавки к металлическому железу, такие как кремний, можно получить материалы с очень малой коэрцитивной силой, которые имеют очень узкую петлю гистерезиса. Материалы с узкими петлями гистерезиса легко намагничиваются и размагничиваются и известны как магнитомягкие материалы.

Магнитные петли гистерезиса для мягких и твердых материалов

Магнитный гистерезис приводит к рассеиванию потраченной энергии в виде тепла, причем энергия теряется пропорционально площади петли магнитного гистерезиса. Потери гистерезиса всегда будут проблемой в трансформаторах переменного тока, где ток постоянно меняет направление, и, таким образом, магнитные полюсы в сердечнике будут вызывать потери, потому что они постоянно меняют направление.

Вращающиеся катушки в машинах постоянного тока также будут нести гистерезисные потери, поскольку они попеременно проходят севернее южных магнитных полюсов. Как указывалось ранее, форма петли гистерезиса зависит от природы используемого железа или стали, и в случае железа, которое подвергается массивным изменениям магнетизма, например, сердечники трансформатора, важно, чтобы петля гистерезиса B-H была как можно меньше.

В следующей статье об электромагнетизме мы рассмотрим закон электромагнитной индукции Фарадея и увидим, что, перемещая проводной проводник в стационарном магнитном поле, можно вызвать электрический ток в проводнике, образующий простой генератор.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Источник: meanders.ru

Примеры решения задач

ПРИМЕР 1

ЗаданиеОбъясните, почему ферромагнетики при циклическом перемагничивании нагреваются тем больше, чем ярче у них выражен гистерезис.
РешениеРассмотрим ферромагнетик, гистерезис которого представлен рис.2. При увеличении индукции от до совершается работа, которая равна площади, ограниченной ветвью кривой намагничивания 1, то есть площади . При размагничивании до исходного состояния возвращаемая работа равна площади , которая имеет, очевидно меньшую величину. Так, при полном цикле перемагничивания нашего ферромагнетика на каждую единицу объема вещества вводится энергия, равна W, причем:
где S — площадь петли гистерезиса. Данная энергия тратится на выполнение работы против коэрцитивных сил в ферромагнетике и в результате переходит в теплоту. Следовательно, ферромагнетики нагреваются тем больше, чем сильнее у них проявляется гистерезис.

ПРИМЕР 2

ЗаданиеЗачем тепло гистерезиса учитывают при расчете электрических приборов и устройств?
РешениеТепло гистерезиса необходимо учитывать при расчете разных электрических устройств, если они содержат ферромагнетики, которые в ходе работы устройства подвержены перемагничиванию. (см. пример 1). Примерами подобных устройств являются железные сердечники трансформаторов, железные якори генераторов постоянного тока. Существование гистерезиса в них ведет к тому, что происходит бесполезная затрата энергии, выделяющаяся в виде теплоты, что понижает коэффициент полезного действия приборов и установок. Для уменьшения ненужных трат используют сорта мягкого железа, у которых петли гистерезиса минимальны, то есть гистерезис проявляется слабо.

В электротехнике есть разные приборы, принцип работы которых основан на электромагнитных явлениях. Где есть сердечник, на котором намотана катушка из проводящего материала, например, меди, наблюдаются взаимодействия за счёт магнитных полей. Это реле, пускатели, контакторы, электродвигатели и магниты. Среди характеристик сердечников есть такая характеристика как гистерезис. В этой статье мы рассмотрим, что это такое, а также какаие польза и вред от данного явления.

Что показывает петля гистерезиса

ГИСТЕРЕЗИС — (от греч. hysteresis отставание) запаздывание изменения физической величины, характеризующей состояние вещества (намагниченности М ферромагнетика, поляризации P сегнетоэлектрика и т. п.), от изменения другой физической величины, определяющей… … Большой Энциклопедический словарь

гистерезис — сдвиг, отставание Словарь русских синонимов. гистерезис сущ., кол во синонимов: 2 • отставание (10) • … Словарь синонимов

ГИСТЕРЕЗИС — ГИСТЕРЕЗИС, явление, характерное для упругих тел; заключается в том, что ДЕФОРМАЦИЯ тела при увеличении НАПРЯЖЕНИЯ меньше, чем при его уменьшении из за задержки эффекта деформации. Когда механическое напряжение удалено полностью, остается… … Научно-технический энциклопедический словарь

Гистерезис — (от греческого hysteresis отставание, запаздывание) 1) Г. в аэродинамике неоднозначность структуры поля течения и, следовательно, аэродинамических характеристик обтекаемого тела при одних и тех же значениях кинематических параметров, но при… … Энциклопедия техники

ГИСТЕРЕЗИС — (от греч. hysteresis отставание, запаздывание), явление, к рое состоит в том, что физ. величина, характеризующая состояние тела (напр., намагниченность), неоднозначно зависит от физ. величины, характеризующей внеш. условия (напр., магн. поля). Г … Физическая энциклопедия

ГИСТЕРЕЗИС — (hysteresis) Зависимость равновесного (equilibrium) состояния системы от того, как осуществляется приспособление (корректировка) в процессе динамики. Подобный подход подрывает традиционное различие между сравнительной статикой и динамикой.… … Экономический словарь

Гистерезис — в экономике предположение о том, что современный уровень экономической переменной зависит от ее прошлого уровня. Словарь бизнес терминов. Академик.ру. 2001 … Словарь бизнес-терминов

ГИСТЕРЕЗИС — (от греч. hysteros более поздний), название, даваемое ряду явлений, объединяемых тем общим свойством, что определенная величина является зависимой от предшествующего состояния исследуемой системы. Г. магнитный. Если поместить железный стержень… … Большая медицинская энциклопедия

гистерезис — Запаздывание изменения физ. величины, хар ризующей состояние вещ ва, по отношению к изменению внешних условий (др. физ. величины); изображается в виде петли гистерезиса. [https://metaltrade.ru/abc/a.htm] Тематики металлургия в целом EN hysteresis … Справочник технического переводчика

Гистерезис — – (от греч. hysteresis – запаздывание) – различная реакция физ. тела на некоторые внешние воздействия в зависимости от того, подвергалось ли это тело ранее тем же воздействиям или подвергается им впервые. Г. объясняется… … Энциклопедия терминов, определений и пояснений строительных материалов

В экономике

Некоторые экономические системы проявляют признаки гистерезиса: например, могут потребоваться значительные усилия, чтобы начать экспорт в какой-либо отрасли, но для его поддержания на постоянном уровне — небольшие.

В теории игр эффект гистерезиса проявляется в том, что небольшие отличия по одному или нескольким параметрам приводят две системы в противоположные стабильные равновесия, например, «хорошее» — доверие, честность и высокое благосостояние; и «плохое» — воровство, недоверие, коррупция и бедность. Несмотря на небольшие первоначальные различия, системы требуют огромных усилий для перехода из одного равновесия в другое.

Эффект гистерезиса — состояние безработицы; достигнув достаточно высокого уровня, она может в определенной мере самовоспроизводиться и удерживаться на нём. Экономические причины гистерезиса (долгосрочной негибкости рынка труда) неоднозначны. Некоторые институциональные факторы ведут к гистерезису. Например, социальное страхование, особенно страхование по безработице, может через налоговую систему снижать спрос фирм на рабочую силу в официальной экономике.

Безработица может вести к потере человеческого капитала и к «помечиванию» тех, кто долгое время остается безработным. Профсоюзы могут вести переговоры с целью поддерживать благосостояние их настоящих членов, игнорируя интересы аутсайдеров, оказавшихся безработными. Фиксированные издержки, связанные со сменой должности, места работы или отрасли, также могут приводить к гистерезису.

Наконец, возможны трудности при различении реальных и кажущихся явлений гистерезиса, когда конечное состояние системы определяется её текущей динамикой или её начальным состоянием. В первом случае гистерезис отражает наше незнание: добавив недостающие переменные и информацию, можно более полно описать эволюцию изучаемой системы. Др. интерпретация явления гистерезиса — простое существование нескольких состояний равновесия, когда невидимые воздействия перемещают экономику из одного состояния равновесия в др.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: emp-tg@cp9.ru