Что такое тороидальный трансформатор и чем он отличается от других типов?


Когда речь заходит о трансформаторах, их типах, то все модели все равно имеют схожий функционал, единственное, чем могут отличаться трансформаторы друг от друга, так это сферой применения и материалами, избираемыми для комплектации изделия. В ассортименте силовых элементов почетное место занимает тороидальный трансформатор, отличающийся удачными конструктивными способностями, хорошими эксплуатационными качествами. А самое главное отличие тороидального трансформатора от всех других типов состоит в том, что сердечник или магнитопровод изделия сформирован в виде кольца. Все же остальные технические преимущества и сферы применения рассмотрим далее более подробно в статье.

Какими по назначению и функционалу бывают тороидальные трансформаторы

  • силовыми и измерительными;
  • повышающими или понижающими.

Подобные силовые элементы способны преобразовывать электроэнергию, воздействуя с разной степенью на напряжение или ток.

Где и для чего используется тороидальный трансформатор

Силовой тороидальный трансформатор имеет широкую сферу применения, как в промышленной, так и в бытовой среде. Так, многие обыватели не задумываются, но тороидальные трансформаторы нас буквально окружают, обеспечивая нам комфорт и уют в домах и квартирах. Во-первых, низкочастотные трансформаторы задействуются в формировании энергосистемы и всех основных коммуникаций, не исключая обычные розетки. Во-вторых, в схемах источника бесперебойного питания для компьютера и смартфона также можно обнаружить трансформатор, который считается незаменимым элементом цепи.

Да и в сфере радиотехники, электроники, инженерии не обойтись без тороидальных трансформаторов. Очевидно, что такие важные силовые элементы используются для создания безопасного и эффективного источника питания осветительной техники, работы медицинского и диагностического современного оборудования.

В промышленной среде совершают расчет тороидального трансформатора и внедряют его в комплектование схем сварочного оборудования.

Универсальный сварочный аппарат с тороидальным сердечником

Почему «мультисварочный»? Потому что у этого сварочного трансформатора (СТ) много важных дополнительных функций. Если в традиционном «сварочнике», который имеет магнитопровод, собранный из П- и Ш-образных пластин, подчас некуда втиснуть хотя бы один-два вспомогательных витка, то в предлагаемой бубликообразной конструкции свободного места оказалось предостаточно.

В итоге он способен и на переменном/постоянном токе варить «пятеркой», и аккумуляторы заряжать, и металл плавить, питать безопасным напряжением электровыжигатели в кружках «Умелые руки», а также выполнять массу других дел. Впору даже вопрос ставить по-другому: а какую еще обмотку и для каких целей желает дополнительно иметь пользователь такого СТ?!

Действительно, за сердечником «сварочника», который имеет вид «бублика», называемого в математике и технике тором, большое будущее. Понимая это, но не имея в своем распоряжении специальных тороидальных магнитопроводов промышленного изготовления, предназначенных исключительно для трансформаторов, самодельщики вынуждены приспосабливать для своих СТ цилиндрические эрзацы от статоров старых электродвигателей мощностью 1-1,5 кВт. Для этого корпуса электромоторов обычно просто разбивают, уложенные в пазах обмотки за ненадобностью выбрасывают, выступы полюсов вырубают И все лишь для того, чтобы на получающиеся заготовки (скорее, напоминающие не бублики, а излишне тяжелые кособокие, бездонные бочки) наматывать толщу меди для достижения «суперцели» — варить сталь «пятеркой»!

Убежден: не надо корежить электродвигатели, даже если они пришли в негодность — рачительный хозяин всегда сможет и сгоревшие обмотки заново перемотать, и подизносившиеся подшипники заменить. Восстановленный двигатель способен еще на многое…

А для предлагаемого мной тороидального магнитопровода достаточно 5 — 6 кг лома трансформаторной стали. Более того, в качестве исходного материала здесь можно довольствоваться даже таким же количеством кровельного железа (отожженного).

Технология изготовления магнитопровода из такого сырья довольно проста (рис. 1). Весь лом плоской трансформаторной стали разрезается ножницами на полосы примерно одинаковой ширины.

Рис. 1. Формирование тороидального магннтопровода: 1 — основание формы; 2 — внешний цилиндр-опалубка («венчик» шестерни для запуска стартером автомобиля ГАЗ-53); 3 — внутренний цилиндр-опалубка (60-мм отрезок стальной трубы 100×6, слегка проточенный, обёрнутый двумя-тремя слоями бумаги); 4 — исходная масса (пластинки шириной 60-70 мм, нарезанные из лома от Ш- и П-образных пластин трансформаторной стали, покрытые быстросохнущим клеем типа конторского, гуммиарабиком или масляной краской и уложенные вперекрышку, с последующей забивкой пустот кровельными отходами)

Практика показывает, что чаще всего приходится иметь дело с прямоугольниками шириной 60-70 мм или чуть меньшими аналогами, нарезаемыми из П- и Ш-образных пластин. В дело идут и все «железотрансформаторные», а также кровельные отходы. После смазывания с обеих сторон каким-нибудь быстросохнущим клеем типа канцелярского («жидкое» стекло), гуммиарабика или даже дешевой масляной краской их плотно укладывают с небольшим перекрытием в опалубку (как при заливке полой бетонной колонны) из подручных материалов.

В авторской технологии внутренним цилиндром опалубки (рис.1) служит 60-мм отрезок стальной трубы 100×6 мм. Внутри его необходимо проточить слегка на конус и обернуть (чтобы впоследствии легче вынимать из «отлитого» магнитопровода) двумя-тремя слоями бумажной полосы. А в качестве внешнего используется съёмный «венчик» шестерни (внутренний диаметр порядка 250 мм) — от системы запуска стартером автомобиля ГАЗ-53.

Разумеется, можно применять для опалубки и другие подходящие заготовки, способные выдерживать механические напряжения, возникающие при «отливке» тороидального магнитопровода. А они — немалые, особенно когда во все щелевые отверстия приходится молотком забивать мелкие пластины (желательно, чтобы те соответствовали ширине набора).

Как только клей высохнет, тороидальный сердечник можно считать практически готовым. Правда, на него еще необходимо сделать односторонне закругленные полукольца-«полубублики» из изоляционного материала. Хотя бы из фанеры — для лучшей укладки будущих обмоток и исключения замыканий на острые ребра магнитопровода.

Этому же станет способствовать и предварительное обертывание тора двумя-тремя слоями киперной ленты, стеклоткани или тканевой полосы, пропитанной олифой.

Теперь об обмотках «сварочника». Наука утверждает, а практика со всей очевидностью доказывает, что трансформатор работает в наивыгоднейшем для него режиме, если в его обмотках через 1 мм2 поперечного сечения медного провода проходит ток, равный 5 А. При экстремальных условиях этот показатель может увеличиваться до 13 А, но при этом провода сильно нагреваются и перегорают.

Для сварки даже 3-мм электродом требуется ток не менее 80 А. Значит, и сечение жил медного кабеля или силовой (сварочной) шины должно ему соответствовать. Взятое с солидным запасом, оно для добротного самодельного сварочного трансформатора обычно находится в пределах от 25 до 35 мм2.

Отталкиваясь от уже упомянутых «минимальных сварочных» 80 А и учитывая широко практикуемое соотношение витков сетевой и силовой обмотки примерно 5:1, находим: ток сетевой обмотки должен быть не менее 16 А. Отсюда следует, что для монтажа сетевой обмотки надо брать медный провод сечением не менее 3,2 мм2. Однако наилучший, пожалуй, вариант — ПЭВ2 диаметром 2-2,5 мм.

Принято считать (и это подтверждается практикой), что при «литом» магнитопроводе, имеющем площадь сечения по трансформаторной стали, равную 40 см2, каждый виток обмотки будет соответствовать напряжению в 1 В. Учитывая возможную нестабильность электропитания, сетевую обмотку следует сделать с запасом.

Ориентир — 250 витков. При этом после 190-го желательно предусмотреть (не разрезая провода!) через каждые десять витков отводы. Конечно же, переключатель для них должен быть достаточно надёжным, с обеспечением хорошего электрического контакта во избежание больших потерь энергии и сильного нагрева во время работы СТ.

Вообще-то намотка сетевой обмотки — операция довольно трудная. Выполнять её приходится с помощью длинных деревянных челноков (рис. 2). Все делать аккуратно, не допуская перехлестывания витков, образования узелков и повреждения слоя изоляционного лака на проводе.

В противном случае можно ожидать появления межвитковых замыканий и перегрева трансформатора.

Рис. 2. Укладка витков сетевой обмотки «сварочника» (междуслойные изолирующие прокладки условно не показаны): 1 — тороидальный магнитопровод; 2 — односторонне закруглённое полукольц-«полубублик» из изоляционного материала (2 шт.); 3 — крепёжная изолирующая прокладка (2-3 слоя киперной ленты, стеклоткани или тканевой полосы, пропитанной олифой); 4 — провод сетевой обмотки (ПЭВ2, диаметром 2-2,5); 5 — деревянный челнок

Если расположить сердечник на двух опорах с мягким покрытием (подкладкой), исключающим повреждения изоляции провода при намотке СТ, то вся работа займет около двух часов. Закончить ее желательно «за один проход», чтобы обмотка не ослаблялась и получалась максимально плотной, с изолирующими прокладками между слоями.

После того, как сетевая будет намотана, неплохо проверить ее на холостом ходу. Если даже за продолжительное время работы магнитопровод с обмоткой станет лишь едва теплым, то все в порядке. Значительное нагревание — свидетельство того, что либо витков мало, либо имеет место межвитковое замыкание (а то и пробой обмотки на корпус!).

На двух-трёхслойную изоляцию сетевой обмотки должна быть уложена вторичная — сварочная, или силовая. А это — от 40 до 80 витков медной шины или многожильного кабеля. Последний предпочтительней по следующим причинам: из него можно сразу сделать сварочные рукава; существенно облегчается намотка; увеличивается срок службы сварочной обмотки с одновременным упрощением условий эксплуатации, что особенно важно при экспериментировании с таким СТ Кроме того, упрощается подсоединение выпрямителя и появляется возможность эффективного регулирования сварочного тока и напряжения путём выполнения элементарной операции — подмотки или отматывания витков кабеля.

Для самодельных не слишком мощных сварочных аппаратов желателен следующий график работы: минута — на сварку, две — на технологический перерыв для охлаждения СТ. Хороший результат дает применение небольших вентиляторов. Вероятно, еще большего можно достичь при использовании для охлаждения «сварочника» простейших теплоизлучающих радиаторов, а также минеральных масел, способных улучшить и изоляцию обмоток СТ.

Добротный сварочный трансформатор должен иметь крутопадающую характеристику. Добиться этого можно, разделив обмотку на две равные части. На одной стороне сердечника наматываются половина сетевой и половина силовой обмотки, а на другой — остальное (и чтобы впоследствии не путаться — в той же последовательности).

Нелишне, видимо, напомнить, что трансформатор — аппарат взаимообратимый: если к любой обмотке подключить переменное напряжение, на которое она рассчитана, то на других появляются те для которых они и предназначены. Кстати, аналогично поступают многие радиолюбители при определении обмоток в неизвестном трансформаторе.

Учитывая вышесказанное, совсем не обязательно сетевую (первичную) обмотку ТС наматывать первой, а уже поверх нее — сварочную (вторичную). Очередность намотки, как и их порядковые номера, лишь условие для более быстрой и привычной ориентации в принципиальной электрической схеме «сварочника». Поэтому если, скажем, надо намотать одну из обмоток достаточно жёсткой шиной, при укладывании которой придется прибегать к киянке, то, конечно же, такую «медь» удобнее располагать первой на сердечнике, дабы не повредить более податливые и уязвимые провода остальных обмоток.

И еще. Если на какую-то обмотку имеется достаточно провода, а для другой обмотки его очень мало, то сначала приступайте к той, где ваши возможности ограничены. Потому что при явной нехватке кабеля или шины на силовую (сварочную) обмотку, но при наличии мощных диодов- полупроводниковых вентилей становится выгодным отказаться от сварки на переменном токе в пользу постоянного (рис.

3). В этом случае напряжение от СТ, а следовательно, и число витков в сварочной обмотке достаточно иметь минимальные. Если шина — с поврежденной изоляцией, то рекомендуется ее сперва отжечь с охлаждением в воде (медь станет мягкой), заизолировать шеллаком и стеклотканью и лишь после этого приступать к наматыванию на магнитопровод.

Схемное решение сварочного выпрямителя с регулятором тока для самодельного мультисварочного трансформатора

Рис 3. Схемное решение сварочного выпрямителя с регулятором тока для самодельного мультисварочного трансформатора (R1 — спираль из нихромовой проволоки диаметром 3—5 мм с передвигаемым ножеобразным контактом)

Нередко у самодельщиков возникают затруднения с подключением силового кабеля к свариваемому изделию: то контакт плохой, то «прихватиться» не к чему. Помочь в таких ситуациях могут два варианта приспособлений (рис.4): магнитный контакт и зажим типа «крокодил». Обе самоделки предельно просты в изготовлении, быстро и удобно крепятся.

При отсутствии должного контакта достаточно их немного потереть о деталь.

Варианты приспособлений для контакта земля - магнитный (а) и зажим типа крокодил

Рис. 4. Варианты приспособлений для контакта «земля» — магнитный (а) и зажим типа «крокодил» (б): 1 — сварочный кабель; 2 — ручка; 3 — стальная накладка; 4 — кольцевой магнит-«прилипала»; 5- винт (количество и расположение — по месту установки); 6 — половина самодельной «зубастой челюсти» прищепки (из отрезка стальной трубы подходящего типоразмера, 2 шт.); 7 — стальная ось, расклёпанная с двух сторон; 8 — пружина.

Неплохо также оснастить сетевую обмотку СТ стандартным автоматом АП, рассчитанным не менее чем на 30 А, — с его помощью удобно отключать трансформатор в паузах между сваркой. Это значительно сэкономит электричество, создаст благоприятные условия для своевременного охлаждения аппарата, сделает работу более безопасной.

Ну а наличие мощного выпрямителя (рис.3) позволит, как уже отмечалось, использовать получившийся агрегат при зарядке аккумуляторов или организации многопостового питания, например, низковольтных паяльников и электровыжигателей в школьных кружках «Умелые руки». Более того, такой агрегат поистине незаменим, например, при производстве гальванических работ на дому или запуске автомобиля в холодных условиях.

Очень интересным и перспективным является оснащение СТ дополнительной обмоткой, содержащей всего лишь один полный виток из отожжённой медной шины 5×50 мм или толстого многожильного медного кабеля диаметром около 20 мм (с концевиками из отрезков толстостенной медной трубы). Как показала практика, с помощью такой обмотки можно выполнять горячую свободную ковку, закалку и воронение, пайку и наплавку; гибку металлической полосы, трубы, толстого стального прута, «кругляка», хрупкой проволоки; литьё олова, цинка, свинца; отвинчивание «прикипевших» болтов, шпилек и гаек; точечную сварку, горячую посадку и ряд других операций.

Как же производить плавную регулировку тока? Да хотя бы упоминавшимся выше способом — корректировкой силовой (кабельной) обмотки. При сматывании части её с магнитопровода уменьшается напряжение с одновременным увеличением тока от СТ, зато ухудшаются, в частности, условия зажигания дуги.

И наоборот: домотка кабеля приводит к возрастанию трансформируемого напряжения с одновременным снижением силы тока, отдаваемого в нагрузку. Электродуга при этом лучше зажигается.

Или другой вариант, когда сварочный кабель подключают к изделию не напрямую, а через несколько витков провода с высоким сопротивлением (например, нихромовым). Сколько резистентных витков — столько и ступеней регулировки сварочного тока. Дуга зажигается во всех случаях почти одинаково.

Регулировку тока СТ можно осуществить с помощью комбинированной задвижки, выполненной из трансформаторной стали и цветного металла. В этом случае на магнитопроводе выполняется поперечный пропил.

Сантехники, автомобилисты, ремонтники и просто любители мастерить все своими руками, этот «сварочник» со столь универсальными свойствами — для вас.

Р.КРАВЦОВ, г. Ейск, Краснодарский край. Моделист-конструктор 2004 №2.

Какими техническими преимуществами обладают тороидальные трансформаторы

  • Экономически выгодные показатели силового элемента с кольцевым магнитопроводом. Внутри происходит передача мощности меньшими размерами и весом.
  • Компактность и малые объемы изделия. То есть намотка тороидального трансформатора свою задачу выполняет без сбоев, а вот сам трансформатор в два раза меньше по сравнению с другими моделями.
  • Простота монтажа и эксплуатации. Бесспорно, трансформаторы с кольцевым сердечником очень просто устанавливать в заданную по схеме позицию, подключать, тестируя перед первым рабочим запуском. И не важно, где планируется выполнить монтаж – внутри или снаружи.
  • Экономия электрического импульса. Где-то треть продуцируемой энергии сохраняется как при полной загрузке, так и на холостом ходу.
  • Высокая тепловая нагрузочная способность. Способствует форма магнитопровода – тороид.

Обладая таким количеством технических преимуществ, тороидальный трансформатор по многим параметрам выигрывает. Например, по сравнению с броневыми и стержневыми трансформаторами, он отличается низкими показателями рассеяния, поэтому безопасен и просто незаменим для чувствительного электронного оборудования.

Особенности намотки тора

Первичная обмотка осуществляется медным проводом в стеклотканевой или хлопчатобумажной изоляции. Ни в коем случае нельзя использовать провода в резиновой изоляции. Для силы тока на первичной обмотке в 25 А наматывающийся провод должен иметь сечение 5−7 мм. На вторичной необходимо использовать провод значительно большего сечения — 30−40 мм. Это необходимо ввиду того, что на вторичной обмотке будет протекать ток значительно большей силы — 120−150 А. В обоих случаях изоляция провода должна быть термостойкой.

Для того чтобы правильно перемотать и собрать самодельный трансформатор, необходимо понимать некоторые детали процесса его работы. Нужно грамотно осуществлять намотку проводов. Первичная обмотка производится с помощью провода меньшего сечения, а количество самих витков здесь значительно больше, это приводит к тому, что первичная обмотка испытывает очень большие нагрузки и, как следствие, может очень сильно греться в процессе работы. Поэтому укладка первичной обмотки должна производиться особенно тщательно.

В процессе намотки каждый намотанный слой необходимо изолировать. Для этого используют либо специальную лакоткань, либо строительный скотч. Предварительно изоляционный материал нарезается на полоски шириной 1−2 см. Изоляцию укладывают таким образом, что внутренняя часть обмотки покрывается двойным слоем, а внешняя, соответственно, одним слоем. После этого весь изоляционный слой обмазывается толстым слоем клея ПВА. Клей в этом случае несёт двойную функцию. Он укрепляет изоляцию, превращая её в единый монолит, а также значительно уменьшает звук гудения трансформатора во время работы.

Как наматывают тороидальные трансформаторы видео

Какими достоинствами обладает сердечник тороидального трансформатора

Напомним, что сердечник или магнитопровод тороидального трансформатора 220 изготавливается в виде кольца. А это практически идеальная форма в физическом плане. Для ее изготовления на производстве используется чаще всего лентообразный пермаллой, причем расход материала небольшой, уменьшена на конвейере отбраковка и обрезка. На втором этапе последовательного изготовления трансформатора на его сердечник наносится обмотка и равномерно без изъянов распределяется по заданной поверхности. Длина проводов обмотки небольшая, поэтому сила сопротивления в сегменте также уменьшена. И это обеспечивает тороидальному трансформатору высокий КПД. Немаловажную роль в этом играем сам сердечник тороидального трансформатора.

Определение конструкции тороидального трансформатора

Интересующимся вопросом рекомендуем изучить книгу С. В. Котенева, А. Н. Евсеева по расчету оптимизации тороидальных трансформаторов (издание Горячая линия – Телеком, 2011 год). Напоминаем: издание защищено законом об авторских правах. Профессионалы найдут силы (средства) приобрести при необходимости книгу. Согласно главам, расчет начинается определением параметров режима холостого хода. Подробно описывается, как найти активный и реактивный токи, высчитать ключевые параметры.

Печатное издание, несмотря на некоторую спорность изложения, попутно дает понять, почему включенный в цепь трансформатор, лишенный нагрузки, не сгорает (энергия тока расходуется намагничиванием). Хотя, казалось бы, предсказан очевидный исход мероприятия.

Число витков первичной обмотки выбирается из условия не превышения магнитной индукцией максимального значения (до входа в режим насыщения, где значение не меняется ростом напряженности поля). Если конструирование ведется для бытовой сети 230 вольт, берется допуск согласно ГОСТ 13109. В нашем случае, имеется в виду отклонение амплитуды в пределах 10%. Помним: вся промышленность перешла в XXI веке на 230 вольт (220 не используется, приводится в литературе, «наследием тяжелого прошлого»).

Что обязательно учитывается при расчете тороидального трансформатора

Для того чтобы применить стандартную физическую формулу, первоначально необходимо узнать параметры напряжения, которое будет подаваться на первичную обмотку изделия (условное обозначение для формулы — U), внешний и внутренний диаметр сердечника или магнитопровода (условные обозначения для расчетов – D и d), и, главное, не забыть о толщине магнитопровода — H.

Немаловажный показатель – площадь окна сердечника (уловно фиксируется в записях — S). От него во многом зависит интенсивность отвода избытка тепла. Данные площади зазора сердечника находятся в периоде от 80 до 100 см, а поперечное сечение в два раза меньше.

На всякий случай вспомним в статье формулы расчетов: S0 = * d2 / 4., Sc = H * (D – d)/2.

Что такое трансформатор?

схема трансформатора

Un трансформатор Это элемент, позволяющий переходить от напряжения переменного тока к другому. Он также может преобразовывать силу тока. В любом случае он всегда будет сохранять неизменными значения частоты и мощности сигнала. То есть isofrequency и isopower …

Этот последний параметр неверен, это было бы в идеальном теоретическом преобразователе, поскольку на практике есть потери в виде тепла, одна из самых больших проблем этих компонентов. Вот почему он перешел от использования твердых железных сердечников к их ламинированию (листы кремнистой стали с изоляцией между ними) для уменьшения вихревых токов или паразитных токов.

Для достижения своей цели электричество, поступающее через входную обмотку, преобразуется в магнетизм за счет обмотки и металлического сердечника. Затем магнетизм, протекающий через металлический сердечник, будет индуцировать ток или электромагнитную силу во вторичной обмотке, чтобы обеспечить указанный ток на ее выходе. Конечно, токопроводящий провод обмоток имеет своего рода изоляционный лак, поэтому, хотя они намотаны, они не контактируют друг с другом.

Чтобы преобразовать одно напряжение в другое, нужно поиграть с количеством витков или витков медного провода в первичной и вторичной обмотке. В соответствии Закон Ленца, ток должен быть переменным, чтобы произошло такое изменение магнитного потока, поэтому трансформатор не может работать с постоянным током.

Как вы можете видеть на изображении выше, отношения Между катушками напряжение и интенсивность очень просты. Где N — количество витков обмотки (P = первичная, S = вторичная), а V — напряжение (P = приложенное к первичной обмотке, S = выход вторичной обмотки) или I, равное току …

По пример, Представьте, что у вас есть трансформатор с 200 спиралями в первичной и 100 спиралями во вторичной. На него подается входное напряжение 200 В. Какое напряжение появится на выходе вторички? Очень простой:

200/100 = 220 / В

2 = 220 / в

v = 220/2

v = 110 В

То есть он преобразует вход 220 В в 110 В на выходе. Но если количество витков в первичной и вторичной обмотке поменять местами, произойдет обратное. Например, представьте, что к первичной обмотке приложено такое же первичное напряжение 220 В, но первичная обмотка имеет 100 витков, а вторичная — 200 витков. К инвестировать это:

100/200 = 220 / В

0.5 = 220 / в

v = 220/0.5

v = 440 В

Как видите, в этом случае напряжение увеличивается вдвое …

Можно ли самостоятельно изготовить тороидальный сердечник

Геометрически правильный тороидальный сердечник не так прост для самостоятельного воспроизведения, особенно начинающими изобретателями. Во-первых, надо иметь в распоряжении специальную пермаллоевую ленту, еще ее называют иногда трансформаторная сталь. Во-вторых, ознакомиться с правилами формирования тора прямоугольного сечения. Действия привычные – надо сворачивать материал в рулон. Действия последовательные и аккуратные, при необходимости возвращайтесь на шаг назад.

Подспорьем в деле может стать специальный деревянный челнок с техническими полукруглыми вырезами, особенно если нужно посчитать, сколько нужно материала для обмотки. Проволока на обмотку всегда берется с припуском. Рекомендуемый запас – 20-30 %.

Таким образом, становится понятно, что тороидальный трансформатор может дать фору другим существующим силовым элементам. И все потому, что он прост, надежен и функционален. Имеющийся сердечник создан в выгодной форме, с которой легко работать не только на этапе изготовления изделия, но и при монтаже, эксплуатации и ремонте. Самостоятельно изготовить такой трансформатор возможно, но для этого понадобится усидчивость, знание, устремление создать продукт, желание совершать расчеты и искать альтернативы.

Подбор и изготовление тороидального сердечника

Наилучшим материалом для изготовления тороидального магнитопровода является ленточная трансформаторная сталь. Для изготовления сердечника эта лента сворачивается в рулон, имеющий форму тора прямоугольного сечения. Если имеется такая лента или сердечник из нее, то особых проблем при изготовлении магнитопровода для тороидального трансформатора не будет.

При малом значении внутреннего диаметра d можно часть ленты с внутренней стороны тора отмотать, а затем намотать ее на наружную поверхность сердечника. В результате возрастут оба диаметра, а площадь внутренней части магнитопровода увеличится. Правда, несколько уменьшится площадь поперечного сечения сердечника S0. При необходимости можно добавить ленту с другого магнитопровода.

Хороший готовый тороидальный сердечник можно взять от рассчитанного на ток 9 А лабораторного автотрансформатора ЛАТР 1М. Нужно только перемотать его обмотки. Бывает, что для изготовления тороидального сердечника для трансформатора используется магнитопровод статора подходящего электродвигателя.

Еще один способ изготовления тороидального сердечника – использование в качестве материала пластин от неисправного мощного промышленного или силового трансформатора, питавшего в свое время ламповый цветной телевизор. Сначала из этих пластин с помощью заклепок изготовляется обруч, имеющий диаметр около 26 см. Затем внутрь этого обруча начинают вставлять одну за другой пластины встык, придерживая их рукой от разматывания.

После набора нужного сечения S0 магнитопровод готов. Для увеличения S0 можно изготовить два тороида одинаковых размеров, а затем соединить их вместе. Края тороидов следует слегка закруглить с помощью напильника. Из электроизоляционного картона следует изготовить два кольца, имеющих внутренний диаметр d и внешний D, а также две полоски на внутреннюю и наружную сторону тора. После наложения их на тороид, сердечник обматывается поверх картонных прокладок киперной или тканой изоляционной лентой. Магнитопровод готов, и можно начинать наматывать обмотки.

Примечания

  1. «Что отличает трансформаторы с тороидальной катушкой от других трансформаторов? | Блог о нестандартных катушках». Блог пользовательских катушек
    . Получено 2018-04-03.
  2. «Тороидальные трансформаторы — Agile Magnetics, Inc.». Agile Magnetics, Inc
    . Получено 2018-04-03.
  3. «Как работает тороидальный трансформатор?». Наука
    . Получено 2018-04-03.
  4. ^ аб
    Гриффитс (1989, п. 222)
  5. Райтц, Милфорд и Кристи (1993, п. 244)
  6. ^ аб
    Холлидей и Резник (1962), п. 859)
  7. Хейт (1989), п. 231)
  8. Фейнман (1964 г., п. 14_1-14_10) Ошибка harvtxt: цель отсутствует: CITEREFFeynman1964 (помощь)
  9. Фейнман (1964 г., п. 15_1-15_16) Ошибка harvtxt: цель отсутствует: CITEREFFeynman1964 (помощь)
  10. Фейнман (1964 г., п. 15_11) Ошибка harvtxt: цель отсутствует: CITEREFFeynman1964 (помощь)
  11. ^ аб
    Фейнман (1964 г., п. 15_15) Ошибка harvtxt: цель отсутствует: CITEREFFeynman1964 (помощь)
  12. Перселл (1963), п. 249) Ошибка harvtxt: нет цели: CITEREFPurcell1963 (помощь)

Функциональные характеристики устройства

Стандартная конструкция тороидального устройства изготовлена в виде однофазного силового трансформатора, обладающего понижающими или повышающими свойствами. В тороидальном сердечнике имеется более двух обмоток.

Принцип работы такого трансформатора ничем не отличается от стержневых или броневых конструкций. Его основной функцией также является преобразование одного значения напряжения электроэнергии в другое. Однако, особенности конструкции сердечника позволяют выпускать приборы со значительно меньшим весом и габаритами. Это способствует росту технико-экономических характеристик и других показателей тороидального трансформатора.

Тороидальный трансформатор

Большое значение для данного вида электрических машин, имеет форма сердечников. Их кольцевая конфигурация считается наиболее оптимальной, дающей значительную экономию при намотке такого трансформатора. Это связано с тем, что намотка симметрично и равномерно распределяется на поверхности сердечника. За счет этого, уменьшается ее длина, что приводит к снижению сопротивления обмотки и одновременному росту коэффициента полезного действия.

Рекомендации

  • Гриффитс, Дэвид (1989), Введение в электродинамику
    , Прентис-Холл, ISBN 0-13-481367-7
  • Холлидей; Резник (1962), Физика, часть вторая
    , Джон Уайли и сыновья
  • Хейт, Уильям (1989), Инженерная электромагнетизм
    (5-е изд.), Макгроу-Хилл, ISBN 0-07-027406-1
  • Перселл, Эдвард М. (1965), Электричество и магнетизм
    , Курс физики Беркли,
    II
    , МакГроу-Хилл, ISBN 978-0-07-004859-1
  • Reitz, John R .; Милфорд, Фредерик Дж .; Кристи, Роберт В. (1993), Основы электромагнитной теории
    , Эддисон-Уэсли, ISBN 0-201-52624-7

Содержание

  • 1 Преимущества тороидальных обмоток
  • 2 Полное ограничение поля B тороидальными индукторами 2.1 Достаточные условия для полного внутреннего удержания поля B
  • 2.2 E поле в плоскости тороида
  • 2.3 Тороидальный индуктор / трансформатор и векторный магнитный потенциал
  • 2.4 Тороидальное действие трансформатора при наличии полного ограничения поля B
  • 2.5 Тороидальный трансформатор Связь вектора Пойнтинга от первичной к вторичной при наличии полного ограничения поля B 2.5.1 Пояснение к рисунку
  • 3 Примечания
  • 4 Рекомендации
  • 5 внешняя ссылка
  • Рейтинг
    ( 1 оценка, среднее 5 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]