Инкубация – практичный и простой метод выведения птицы. Любой птицевод знает, что для успешной инкубации яиц нужно поддерживать стабильную температуру и влажность воздуха. В этом помогает автоматический терморегулятор. Он нагревает элементы так, чтобы температура в инкубаторе не менялась, даже если на улице она резко изменится.
От того, насколько прибор точен и надёжен, зависит количество выводимых птиц, их здоровье и жизни. Но необязательно покупать дорогие терморегуляторы в магазинах. Имея необходимые детали, навыки и знания в электрике, можно сделать регулятор температуры своими руками. Такой прибор будет ничем не хуже покупного.
Рекомендуем полезную статью для птицеводов: брудер для цыплят своими руками.
Нужен ли самодельный терморегулятор?
На рубеже восьмидесятых годов, когда готовые изделия были в дефиците, пользовались популярностью самоделки, особенно радиолюбительские. Вот одна из простейших схем терморегулятора того времени.
Схема
Более надежная, обладающая большей помехоустойчивостью схема на операционном усилителе ОУ КР140УД6. Цена, используемых полупроводниковых приборов невысокая, что делает эти схемы привлекательными для радиолюбителей.
Еще одна схема
Сейчас в интернете рекламируют и предлагают конструкторы с готовыми комплектами запчастей для сбора терморегулятора, как пишут, простого и надежного. Многие в надежде сэкономить приобретают их. Но если вы далеки от радиотехники, то это вряд ли стоит делать. Получится намного дороже, так как потратите невосполнимые нервные клетки и не менее ценное время. Говорят же, “время — деньги”.
Так как просто умения паять для работы с печатными платами и полупроводниковыми приборами недостаточно. Последние очень чувствительны к высоким температурам. Перегреете и можно выбрасывать. Но даже если сделаете все правильно, схему нужно настроить. А это редко удается с первого раза (даже из-за банального разброса параметров элементов). Конечно, если вы по жизни счастливчик и часто выигрываете в лотерею, то попытаться можно.
Современные схемы терморегуляторов составляются уже на программируемых микросхемах. Их функции можно изменить путем прошивки. Но для этого надо иметь программатор и код прошивки. Пример схемы терморегулятора с использование PIC-контроллера приведен ниже.
Эта схема не годится для практического исполнения. Для этого нужна соответствующая прошивка
В итоге можно сказать, что терморегулятор в инкубаторе — вещь незаменимая. Об этом, конечно, знает каждый птицевод. Но какой из них лучше выбрать? Частично получить ответ на поставленный вопрос поможет эта статья. Но главный подсказчик — это задачи, которые вам надо решить и ваши финансовые возможности.
Приглашаем вступить в наш и группу во Вконтакте или Одноклассниках, где публикуются новые статьи, а также новости для садоводов и животноводов.
Как работает цифровой терморегулятор?
Точность регулирования температуры лучше всего обеспечивается благодаря применению цифровых терморегуляторов. От простых конструкций они отличаются методом обработки сигнала. Напряжение снимается с датчика, проходит аналогово-цифровой преобразователь и попадает в сравнительный бок. Полученное в цифровом виде первоначальное значение температуры далее сравнивается с полученным из датчика, после чего управляющий прибор получает соответствующую команду.
Благодаря такому методу точность измерения повышается и почти не зависит от температуры окружающей среды или помех. Чувствительность и стабильность чаще всего ограничиваются разрядностью системы и возможностями датчика. Цифровой сигнал без труда позволяет выводить температуру на специальное табло.
Обзор моделей терморегуляторов цифрового типа
Терморегулятор Ringder THC-220 – недорогая модель, которая отлично подойдет для небольшого домашнего инкубатора, собранного своими руками. Благодаря внешнему блоку розеток и регулировке температуры от 16 до 42 градусов его можно применять и в межсезонье, а не только летом.
Технические характеристики прибора:
- влажность и температура в области датчика высвечиваются на специальном дисплее;
- индицируемая температура варьируется от -40 и до 100 градусов, а влажность – до 99 процентов;
- тот или иной режим отображается в виде определенного символа;
- шаг температурной установки составляет 0,7 градуса;
- таймер имеет формат на 24 часа и делится на ночной и дневной;
- один канал имеет нагрузочную способность 1200 Вт;
- температура в большом помещении может отклоняться в пределах одного градуса.
Другая заводская модель цифрового контроллера – ХМ–18. В России его можно купить с английским или китайским интерфейсом. Он более сложный и стоит дороже предыдущего прибора.
Разобраться с ним несложно. В зависимости от требуемой температуры внутри инкубатора, специальными клавишами можно контролировать заводскую программу. На лицевой панели есть экраны, где отображается температура, влажность и дополнительные параметры. Активные режимы индицируются посредством светодиодов, при опасных отклонениях срабатывает световая и звуковая сигнализация.
Характеристики ХМ–18:
- температурный рабочий диапазон – от 0 до 40,5 градусов, вероятность отклонения – 0,1 градуса;
- допустимая нагрузка по каналу нагревателя составляет 1760 Вт;
- допустимая нагрузка по каналам влажности, сигнализации и моторов – 220 Вт;
- между переворачиваем яиц предусмотрен интервал до 999 минут;
- вентилятор охлаждения работает 999 секунд между допустимыми периодами между переворачиваниями;
- в помещении допускается температура от -10 до 60 градусов, а относительная влажность – до 85 процентов.
При выборе заводского терморегулятора с температурным датчиком для инкубатора очень важно учитывать его возможности. Если он небольшой и сделан своими руками, то вам хватит прибора, контролирующего лишь влажность и температуру, а дополнительные возможности нужны для более сложных моделей для промышленных нужд
Немного теории
Любой терморегулятор конструктивно включает в себя три основных блока:
Теоретически температурный датчик можно представить набором из четырех сопротивлений, среди которых три резистора будут представлены элементами с постоянными электрическими параметрами, а четвертый переменным. Они собираются в схему измерительного полуплеча, приведенную на рисунке 1 ниже:
На схеме показан принцип соединения резисторов для получения температурного датчика. Как видите, сопротивление R2 является переменным и меняет физическую величину в соответствии с изменениями температуры окружающей среды. При подаче одного и того напряжения питания в терморегуляторе, при изменении сопротивления в плече будет возрастать ток в цепи.
На основании изменений происходит анализ температурных колебаний в результате которого рабочий орган вызывает срабатывание терморегулятора и последующее отключение или включение оборудования.
Для измерения сопротивления резисторов в качестве логического элемента устанавливается микросхема, работающая в режиме компаратора. Ее задача сравнить электрические сигналы в двух плечах. Пример схемы регулятора температуры приведен на рисунке:
Здесь блок микросхемы U1A принимает сигналы от измерителя температуры на входы 2 и 3. При достижении температуры срабатывания, в плечах начнет протекать разный ток, и компаратор выдаст на управляющий элемент электронного терморегулятора сигнал о включении.
При остывании датчика термометра ток в плечах терморегулятора уравняется, и электронный блок выдаст управляющий сигнал на отключение. Приведенная электронная схема работает в двух устойчивых состояниях – отключенном и включенном, чередование рабочих режимов происходит в соответствии с заданной логикой.
Эта схема терморегулятора используется в работе куллера персонального компьютера, получая электроснабжение от блока питания, происходит сравнение тока в плечах. Когда блок питания перегреется, терморегулятор переведет транзистор в противоположное состояние и вентилятор запустится.
Такой принцип может применяться не только в вентиляторах, но и в ряде других устройств:
- для контроля работы электрического отопления по температурным показаниям в помещении;
- для установки уровня температуры в самодельном инкубаторе;
- при подключении теплого пола для контроля его работы;
- для установки температурного диапазона работы двигателя, с принудительным охлаждением или отключением системы при достижении граничного значения температуры;
- для паяльных станций или ручных паяльников;
- в системах охлаждения и холодильном оборудовании с логикой снижения температуры в определенных пределах;
- в духовках, печах как бытового, так и промышленного назначения.
Сфера применения терморегулятора ничем не ограничена, везде, где вы хотите получить контроль уровня температуры в автоматическом режиме с управлением питания, такое устройство станет отличным помощником.
Из термостата в терморегулятор
Термостат – это прибор, позволяющий поддерживать температуру на определенном уровне. Он входит в устройство предметов бытовой техники, работа которых основана на поддержании постоянной температуры посредством нагрева.
Для преобразования термостата в терморегулятор можно взять новый прибор или извлечь его из сломанной домашней техники.
Сборка схемы выполняется поэтапно:
Подготовка термостата. Корпус наполняют специальным эфиром. Это позволяет повысить чувствительность термостата – цепь будет смыкаться и размыкаться от малейших температурных колебаний. Подключение реле регулятора. Термореле понадобится для точного измерения температуры воздуха. Оно помещается внутрь инкубатора. Подключение к сети питания
При осторожном извлечении термостата из оборудования к нему уже будет подведен шнур питания. Но если его нет, то его нужно припаять к устройству, иначе самодельный терморегулятор не сможет работать. Подключение регулировочного винта
Регулирование происходит с помощью винта. Он уже входит в состав термостата. По желанию или необходимости его можно заменить на более удобный.
После сборки самодельного терморегулятора проверяют его работоспособность. Для этого используют любую закрывающуюся емкость и термометр.
Если его показания совпадают со значениями, указанными на устройстве, то такой регулятор можно смело использовать для инкубации яиц.
Назначение устройства
Принцип работы терморегулятора — обратная связь, при которой одна контролируемая величина косвенно влияет на другую. Для искусственного выведения птицы очень важно сохранять нужную температуру, ведь даже незначительный сбой и отклонения могут сказаться на количестве вылупившихся птиц — терморегулятор для инкубации именно для этого и предназначен.
Прибор нагревает элементы таким образом, чтобы температура оставалась неизменной даже при изменениях в окружающем воздухе. В уже готовом приборе есть датчик для терморегулятора инкубатора, который контролирует температурный процесс.
Каждый птицевод должен знать основы рабочего процесса прибора, тем более что схема подключения очень проста: к выходным проводам присоединяют источник тепла, по другим идет электричество, а к третьему проводу подключается термодатчик, через который считывается значение температуры.
Электронные самодельки бытового применения
материалы в категории
С. АБРАМОВ, г. Оренбург Радио, 2002 год, №9
Терморегулятор, схема которого показана на рисунке 1 предназначен для малогабаритного инкубатора и поддерживает в нем заданную в интервале 20…50°С температуру. Датчиком служит терморезистор RK1, вместе с резисторами R1, R3, R4, R6 образующий измерительный мост. Баланса моста при заданной температуре добиваются переменным резистором R6. Конденсаторы С1 и СЗ — помехоподавляющие.
Если температура выше заданной, полярность напряжения разбаланса моста на входе компаратора DA1 такова, что выходной транзистор последнего закрыт, в противном случае — открыт На вывод 9 DA1 (коллектор выходного транзистора) подано с выхода однополупериодного выпрямителя на диодах VD1 и VD2 пульсирующее напряжение. Амплитуда его импульсов ограничена стабилитроном VD3. При температуре ниже заданной импульсы с вывода 2 DA1 (эмиттера выходного транзистора) поступают на управляющий электрод тринистора VS1, открывая его в положительных полупериодах сетевого напряжения. Соединенные параллельно резисторы R7—R16 служат нагревательным элементом.
Цепь VD4C4 превращает пульсирующее напряжение в постоянное. После стабилизатора DA2 им питают измерительный мост и компаратор.
Печатная плата терморегулятора с расположением деталей
Детали конструкции
Возможны следующие замены элементов: компаратор К554САЗ (DA1) — на 521САЗ с учетом отличий в назначении выводов, интегральный стабилизатор КР142ЕН5А (DA2) — на любой другой с выходным напряжением 5…6 В и током нагрузки не менее 50 мА, тринистор КУ201К (VS1) — на КУ201Л, КУ202К-КУ202Н, диоды КД105 (VD1, VD2, VD4) — на любые кремниевые с допустимым током 150…
300 мА, стабилитрон Д814Д (VD3) — на Д814Г. В качестве RK1 применен терморезистор СТ1-17, его номинал (сопротивление при комнатной температуре) может достигать 4,7 кОм, нужно лишь в соответствующее число раз увеличить и номиналы резисторов измерительного моста. Переменный резистор R6 — СПЗ-4а. Оксидные конденсаторы — К50-35 или аналогичные. Конденсатор С2 — К73-17 на напряжение не менее 400 В.
Инкубатор представляет собой пенопластовую коробку размерами 600x600x300 мм. В ее днище просверлены отверстия диаметром 6…10 мм для доступа воздуха и выдавлены канавки, в которые для поддержания необходимой влажности наливают воду температурой 43°С (при заливке). Внутри устанавливают металлическую решетку для укладки яиц, размещают терморезистор RK1 и нагревательный элемент из резисторов МЛТ-2 (R7—R16). Уменьшить инерционность нагревателя можно, собрав его из резисторов МЛТ-0,5. Их число и номиналы подбирают таким образом, чтобы общее сопротивление осталось прежним и не была превышена допустимая мощность, рассеиваемая одним резистором Нагревателем может служить и обычная лампа накаливания или ТЭН мощностью 20…30 Вт на напряжение 110…127В.
В помещении, где находится инкубатор, необходим постоянный приток свежего воздуха, а температура не должна выходить за пределы 20…25 °С. На инкубатор не должны падать прямые солнечные лучи.
Обогреватель для аквариума
Реже, такой терморегулятор применялся для поддержания заданной температуры в аквариумах с тропическими рыбками. Такая необходимость возникала из-за того, что большинство, выпускаемых для этих целей термообогревателей, имеет механический терморегулятор объединенный с тэном в одном корпусе. А следовательно, они поддерживают в заданных пределах свою, а не окружающую температуру. Это хорошо работает только в помещениях со стабильной, в пределах одного-двух градусов, своей температурой воздуха.
Особенности монтажа
- из-за инертности воды, датчик и обогреватель должны быть разнесены, но в пределах прямой видимости (без перекрытия растениями и элементами декора) друг от друга;
- из-за электропроводимости воды, датчик должен быть изолирован, либо средствами с хорошей теплопроводностью, либо тонким слоем обычного герметика;
- допускается использование как обычных аквариумных обогревателей, так и регулируемых, с выставленной на максимум температурой.
Можно найти и другие сферы применения данному, несложному в изготовлении устройству. К примеру для рассадных парничков, сушильных шкафов, различных термованночек. На что вашей фантазии хватит. Только, если нагрузка допускает возможность короткого замыкания, необходимо добавить плавкий предохранитель на 1 А.
P.S. Как говорилось выше данный простой терморегулятор применялся в инкубаторах раньше, сейчас на его смену пришли терморегуляторы с микроконтроллерным управлением, способные в автоматическом режиме понижать температуру в течении цикла инкубации. Да и сами инкубаторы обзавелись функцией регулирования влажности и переворачивания яиц.
12 thoughts on “ Схема терморегулятора для инкубатора своими руками ”
За микроконтроллерами будущее, не спорю, спасибо Гарвардской архитектуре вообще и Микрочип Технолоджи в частности. Но везде ли рентабельно их применение, с их-то возможностями. Сами-то они не дороги, но необходимая им периферия может быть разной. Да и без знания программирования на низком, машинном уровне — браться за них не стоит. Одним словом — чип для профессионалов и профессионального использования. Но осваивать цифровые технологии необходимо и любителям, конечно, куда сейчас без них.
Видел инкубатор со схемой которая намного проще, где используется маломощный закрытый нагреватель и тепловое реле-регулятор. Конечно эта схема хорошая, но для любителя сложновата, ведь её надо ещё настроить.
Эту схему настраивать не нужно, заработать должна сразу. Вот подстраивать температуру нужно будет. Если брать готовый регулятор, то и паять ничего не нужно: просто прикрутить провода к клеммам и готово. Кстати терморегулятор с цифровым индикатором, микропроцессором и датчиком температуры на алиэкспрессе можно купить что-то около 2 долларов. Долларов за 10-15 можно взять терморегулятор для теплого пола с графиком изменения температуры в течении суток и по дням недели.
Метки: датчик температуры, изготовление датчика
Комментарии 153
Я точно такой же на двухконтурный котёл поставил.Тертий сезон уже пашет.Блок питания от усилителя антенны. А у вас контролёр с датчиком шла?
нет, датчик насколько я помню, покупал отдельно в Чип и Дипе
Но вообще потом все задуманное собрал на DS18B20
А такой вариант: термопара закрепленная на патрубке и простенький мультиметр в режиме измерения температуры
Подскажите, а плата для индикации- это что за она? Самодельная?
нет, не самодельная — друг на алиэкспрессе купил «пучёк за пяточёк» и одну мне подарил:
Сами такую приблуду не думали замутить?
Думал. На датчике ДС1820. Но так вышло что зашел в гости к другу, за рюмочкой чая разговорились, я ему рассказал что хочу сделать, а он достал с полки это устройство, да мне и отдал. Теперь надобность в самостоятельном изготовлении как бы и отпала.А так я вот по этой схеме уже делал раньше и у меня под нее все есть:
Даллас лучше работает по сравнению с термисторами, и в цифре.Правда диапазон маловат.
почему маловат? для применения в авто более чем достаточен.
У далласа в принципе диапазон измерений лучьше.Но верхняя планка критична.Термистор на сколько я помню не надежен.Хотя если потенциал сидит 12 вольт, то работает.А Далласу надо стабильное питание.
Можно подробнее что значит критичней верхняя планка? Больше 120 градусов я нагревал феном датчик, вроде работает после этого.
Верхний диапазон температуры вроде равен 125 градусов у далласа.То бишь -50 и +125.А температура если нужна будет контролирумая выше 125 то Даллас не справится.Вообще точность у него нормальная, но задержка есть 0,5-1 сек.Есть 3 проводное подключение, есть возможность подключать по 2 проводам.Будет задержка и диапазон меньше.
Знаю про эти подключения, сейчас ради прикола попровал нагреть датчик феном, 127.9 удалось максимально на нем увидеть, дальше ноли, когда остывает то приходит в норму)
да не, это уже отработанная технология. заморочился только с тем что все отфоткал, сформулировал и выложил сюда )
Я понимаю, что отработанная, просто стоит ли это таких трудов при сравнительно невысокой стоимости датчика? Хотя конечно бывают редкие и дорогие датчики…
да не, дело не в стоимости, а в том чтобы запихнуть китайский датчик в нужный конструктив.вот надо тебе температуру воды например регулировать кипятильником — просто так же датчик в воду не засунешь его надо как то вкрутить, соответственно нужен корпус.
кстааати, а клевая идея…слушай во сколько мжет обойтись такой самый дешевый датчик? еще бы он вот цепь бы размыкал как терморегулятор и тогда цены бы не было…
Я понимаю, что отработанная, просто стоит ли это таких трудов при сравнительно невысокой стоимости датчика? Хотя конечно бывают редкие и дорогие датчики…
Ну, смотри — у меня, к примеру, Бош Моно-Джетроник, по всем таблицам ДТВВ и ДТОЖ должны (при одинаковой температуре воздуха и ОЖ) давать «мозгам» одинаковое сопротивление. При этом ДТВВ вполне адекватен, но замене не подлежит (из-за особенностей конструкции). А ДТОЖ — «глючный», при разности показаний ЭБУ начинает «подгонять», т.к. не может сообразить кому верить (ДТОЖ или ДТВВ)!Покупал 4 (ЧЕТЫРЕ) разных датчика — все разное сопротивление при одинаковой температуре дают!А при вышеописанной технологии есть возможность подобрать копеечный термистор практически под любое значение сопротивление при заданной температуре! Да, что там, можно заменить ОБА термистора (подобрав нужное сопротивление) и на ДТОЖ и на ДТВВ ! А это поможет решить сразу несколько проблем с «глюками» электронной системы питания! Тем более цена китайских термисторов, расходников и проч. не идёт ни в какое сравнение с «фирменными» датчиками (которые невозможно иногда заменить, или они стоят как крыло от самолёта) !Я понятно объясняю? )))
Виды терморегуляторов
ТР для инкубаторов по своему внутреннему устройству разделяются на три вида:
- Электромеханические.
- Электронные.
- PID-регуляторы.
Электромеханические
Главный элемент электромеханического ТР – биметаллическая пластина. Элемент состоит из двух металлов с разным коэффициентом теплового расширения. Поэтому при нагреве или охлаждении пластинка изгибается.
Используя это свойство биметаллического сплава, конструкторы подобрали такие технические характеристики, при которых колебания температуры окружающей среды вызывают изменения геометрической формы пластинки. Она размыкает (замыкает) контакты реле питания нагревательных элементов инкубатора. Это самая простейшая конструкция регулятора температурного режима.
Электронные
Позднее с развитием электротехники появились электронные терморегуляторы, где роль биметаллической пластины стала исполнять термопара. Электронные датчики температуры для инкубаторов представляют собой довольно сложные устройства, которые обладают точной настройкой степени нагрева яиц.
Помимо этого, прибор может нести дополнительную функцию, как регулятор уровня влажности в объёме птичьего «родильного отделения». Одним из достоинств электронного прибора является экран (дисплей). На нём в реальном времени отражается информация в цифровом выражении о состоянии внутренней воздушной среды инкубатора – это уровень нагрева в градусах Цельсия и процент уровня влажности.
Цифровой терморегулятор
В крупных фермерских хозяйствах устанавливают профессиональные инкубаторские шкафы. Их оснащают электронными ТР, которые, кроме стандартного набора функций, обладают дополнительными опциями. Такие приборы не требуют постоянного контроля со стороны человека. Связанный с универсальным электронным блоком управления инкубатором терморегулятор является источником команд для того или иного оборудования: нагревательных элементов, вентиляторов, механизмов открывания шкафов и устройств переворота яиц.
Обратите внимание! Высокая точность регулировки температуры даёт возможность считывать информацию с экрана, практически автоматическому функционированию электронных приборов – всё это подтверждает постоянно растущий спрос на эти приспособления
PID-регуляторы
Термин ПИД регулятор означает пропорционально интегрально-дифференцирующее устройство с обратной связью. Их применяют в автоматизированных системах инкубаторов. ПИД приборы, встроенные в управляющий блок, поддерживает постоянную температуру воздуха в замкнутом пространстве.
В отличие от стандартных электронных устройств, ПИД регулятор точно определяет величину падения нагрева воздуха вокруг яиц. С его помощью подаётся команда на включение нагревательных элементов. Причём ТЭНы начинают работать с такой мощностью, какая нужна именно для восстановления температурного режима и не более того. Благодаря этому, электроэнергия не тратится впустую, и отсутствует риск перегрева яиц.
Дополнительная информация. Внедрение ПИД регуляторов в инкубаторах помогло покончить со случайным перегревом зародышей, что привело бы их к гибели. Точная выдержка постоянной температуры в течение всего периода выведения птенцов обеспечивает низкий процент отбракованных цыплят.
Принцип работы
Датчик температуры подает электрические импульсы, величина тока которых зависит от уровня температуры. Заложенное соотношение этих величин позволяет устройству очень точно определить температурный порог и принять решение, например, на сколько градусов должна быть открыта заслонка подачи воздуха в твердотопливный котел, либо открыта задвижка подачи горячей воды. Суть работы терморегулятора заключается в преобразовании одной величины в другую и соотнесении результата с уровнем силы тока.
Простые самодельные регуляторы, как правило, имеют механическое управление в виде резистора, передвигая который, пользователь устанавливает необходимый температурный порог срабатывания, то есть, указывая, при какой наружной температуре необходимо будет увеличить подачу. Имеющие более расширенный функционал, промышленные приборы, могут программироваться на более широкие пределы, при помощи контроллера, в зависимости от различных диапазонов температуры. У них отсутствуют механические элементы управления, что способствует долгой работе.
Терморегулятор для инкубатора своими руками
За несколько часов до укладки яиц следует включить терморегулятор, с помощью переменного резисторе R6 установить в инкубаторе температуру 37,5 °С и убедиться, что она стабилизировалась. Для контроля в специально предусмотренное отверстие в крышке инкубатора вставляют спиртовой термометр. Продолжительность инкубации яиц различных птиц приведена в таблице.
Если птенцы первого выводка вылупятся нв сутки раньше срока, в дальнейшем устанавливайте температуру на 0,5 °С меньше указанной выше, если на сутки позже, — на столько же больше.
Яйца должны быть свежими, плодоспособными, возрастом не более 15 суток и с воздушной камерой в тупом конце. Мыть и переохлаждать яйца не следует.В инкубаторе они должны лежать свободно, острым концом ниже тупого. Необходимо трижды в день переворачивать яйца, прекратив эту процедуру лишь за трое суток до ожидаемого выводка. Для переворачивания яиц приходится открывать инкубатор, после чего температурный режим в нем восстанавливается в течение одного-двух часов. Ускорять этот процесс, регулируя переменный резистор R6, не следует. Не задолго до появления птенцов яйца разогреваются за счет выделяемого ими тепла, поэтому температуру в инкубаторе следует уменьшить на 0,5°С.
Описание конструкции
Модуль управления терморегулятора должен быть помещен в какой-нибудь корпус.
Наилучшим образом для этого подходит старый, отслуживший свое электросчетчик.
Здесь найдется и плата, на которой можно разместить радиодетали, и катушка для изготовления понижающего трансформатора.
Кроме того, в электросчетчике имеется клеммник с розеткой, в который очень удобно включать провод от нагревателя.
Термодатчик помещают в стеклянную или термоусадочную трубку (предотвращает механические повреждения) и кладут прямо на лотки с яйцами.
Если в качестве обогревателя предполагается использовать лампы накаливания, то патроны для них лучше закрепить на алюминиевой пластине. Предварительно в ней придется просверлить несколько отверстий соответствующего диаметра.
Обычно нагреватель устанавливается под лотком с яйцами, при этом автомобильные лампы и обычные 220-вольтовые располагают вперемешку.
Если навыков радиолюбителя у вас нет, можно собрать примитивный терморегулятор, используя термостат от какого-нибудь ненужного или поломанного электроприбора. Лучшим «донором» является старый утюг. Извлеченный из него термостат промывают, заполняют эфиром и герметично запаивают. Эфир активно испаряется, поэтому работу с ним затягивать не следует.
Это вещество выбрано потому, что оно хорошо реагирует на колебания температуры изменением объема. Остается припаять к термостату регулируемый винт или пластину, которые при определенной температуре будут замыкать контакты в цепи нагревателя.
Обогреватель в качестве вспомогательного прибора для отопления часто используют и в частных домах, и в квартирах. Масляные радиаторы отопления электрические очень популярны среди потребителей благодаря их эффективности.
Нужно ли покупать ИБП для котла отопления? Попробуем разобраться далее.
Сообщества › Кулибин Club › Блог › Электрика: Датчики температуры, делаем сами.
Иногда возникает нужда в температурном контроле за каким нибудь процессом, будь то автомобиль или народное хозяйство. Схем термоконтроля всяких много, но датчики как правило имеют неудобный конструктив, не предусматривающий крепления в контролируемой среде. Вот о датчиках и поговорим.
Как правило, датчиками для измерительных схем служат полупроводниковые приборы — термисторы:
Корпус может быть другим, но внутри все равно будет сидеть примерно такая капелька с выводами.
Вторым распространенным датчиком температуры является DS1820:
зачастую они продаются в таком виде:
Внутри все та же микросхемка DS18B20 о трех выводах причем даже без термопасты.
Теперь давайте попробуем внедрить эти радиодетали в автомобиль, например для цифровой индикации температуры ОЖ или управления электровентиляторами.
Нам понадобится донорский датчик — любой подходящий по резьбе и стоимости. В моем случае это Волго-УАЗовский датчик ТМ 106-10
:
Берем дрель в качестве токарного станка и аккуратно зажимаем датчик в патрон. Ножовкой по металлу спиливаем завальцовку. Когда датчик развалится на составные части так же в дрели ровняем край датчика надфилем. Получаем корпус-заготовку для внедрения туда нашей радиодетали.
Далее можно пойти двумя путями:1. Залить в корпус расплавленного припоя, в этом припое просверлить канал и вставить туда термистор. Можно заполнить полость корпуса термопастой и воткнуть термистор в неё, но у олова теплопроводность на несколько порядков лучше чем у термопасты, поэтому термопасту конечно же надо применять, но мазать ее лучше тонким слоем.
Минус этого метода в большой инерционности полученного датчика.
2. Сделать так, как делаю это я Берем телескопическую антенну от какого нибудь старого ненужного девайса:
Если вы их раньше выкидывали, то делали это зря, потому что такие антеннки являются источником замечательных тонкостенных латунных трубочек разного диаметра:
Подбираем трубочку наиболее подходящую к термистору — он должен максимально плотно вставляться внутрь трубки. Отмеряем и опять воспользовавшись дрелью, отрезаем нужный нам кусочек трубки — резать лучше надфилем. Берем наш корпус-заготовку и сверлим его торец по диаметру трубки. Торец корпуса лудим оловом, трубку зачищаем до латуни и тоже облуживаем. Вставляем трубку в корпус и припаеваем их друг к другу, паяльника на 80Вт хватает за глаза. Должно получиться как то так (торец уже запаян небольшим кусочком медной фольги толщиной 1мм):
Проверяем полученный корпус датчика на герметичность. Я делаю это не очень технологично — на присос языком
Если с герметичностью все в порядке приступаем к следующей стадии: установке термистора и разъема.
Опять все примеряем и отрезаем выводы термистора с тем расчетом, чтобы при установке в корпус термистор находился в конце трубки, а лучше упирался в торец:
Теперь термистор готов к установке. Закладываем немного термопасты вовнутрь трубки, сам термистор тоже немного обмазываем термопастой и вставляем в трубку. После того как термистор вошел в трубку под разъем закладываем немного приготовленного заранее поксипола или эпоксидного пластилина. Вдавливаем разъем в поксипол, излишки убираем. Когда поксипол окончательно застынет получается вот такой симпатичный датчик готовый к установке:
А вот так датчик будет стоять на своем рабочем месте — измерительная часть будет полностью омываться рабочей средой:
Ну и картинка общей проверки работоспособности электрической части:
Достоинства и недостатки
Прибор этой серии выгодно отличается от аналогов низкой ценой и продолжительным сроком эксплуатации. Производитель гарантирует бесперебойную работу в течение 10 лет. Пользователи инкубатора «Несушка» отмечают следующие плюсы:
- соотношение цена-качество;
- легкость и компактность конструкции;
- возможность автоматизированного контроля процесса инкубации;
- большая вариативность комплектации.
Несмотря на большое количество положительных сторон, прибор имеет и недостатки:
- сложность мытья и дезинфекции, невозможность использования ультрафиолета;
- хрупкость конструкции, возможность протекания камеры в нижней части инкубатора;
- частые сбои электронной системы, поэтому приходится переводить устройство в полностью ручной режим;
- необходимость в ротации яиц, поскольку обогрев осуществляется неравномерно.
Про инкубатор «Идеальная наседка» можно прочитать тут.
К преимуществам относят невысокую цену — от 3100 рублей — и компактные размеры. Модель Би-1 с автоматическим поворотом яиц и цифровым табло весит 3,3 кг, и имеет габариты: 67*34*31 см. В стандартную комплектацию включены две дополнительные решетки для перепелиных и гусиных яиц. Еще один плюс — наличие смотрового окна, которое избавляет от необходимости каждый раз снимать крышку.
» alt=»»>
У прибора есть и ряд недостатков. Пользователи отмечают:
- Хрупкость,
- Ненадежность механизма переворота яиц,
- Необходимость утепления инкубатора во время отключения электроэнергии.
Выбор схемы регулятора
Если взять за основу для изготовления терморегулятора заводские изделия, можно столкнуться с непреодолимыми трудностями по сборке, а особенно по настройке таких изделий.
Чтобы обойти лишние проблемы, лучше всего выбрать схему изделия доступную для изготовления в домашних условиях.
Главным критерием для любого типа терморегуляторов является обеспечения высокой чувствительности к перепадам внутренней температуры внутри инкубатора, а также мгновенное реагирование на эти изменения. «Самодельщики» в большинстве случаев применяют два варианта построения регуляторов:
- Построение прибора на основе электрической схемы и радиодеталей. Способ сложный и доступный для подготовленных специалистов;
- Изготовление регулятора на основе термостата от бытовой техники.
Давайте кратко рассмотрим оба варианта изготовления.
Изготовление терморегулятора на основе схемы и радиодеталей
На рисунке ниже показана принципиальная схема самодельного регулятора температурного режима при инкубации.
Если внимательно рассмотреть схему этого прибора, то можно убедиться, то для его сборки требуются широко распространённые радиокомпоненты.
Для самостоятельного изготовления прибора потребуется приобрести следующие радиодетали:
- Стабилитрон любого типа, который сможет обеспечить стабилизацию напряжения в пределах 7-9 Вольт;
- Два транзистора, один из них из МП 42 с любой буквой или аналогичный ему, второй из серии КТ 315, буквенный индекс прибора может быть любой;
- Тиристор из серии КУ 201-КУ 202, буква в обозначении должна быть Н;
- Четыре диода серии КД 202, желательно с буквенными обозначениями Н или НС. Можно использовать и другие полупроводниковые приборы, при условии их допустимой мощности не менее 600 Вт;
- Регулировка режима производится переменным резистором любого типа сопротивлением от 30 до 50 кОм;
- Резистор R5 должен иметь рассеиваемую мощность не менее 2Вт, остальные по 0,5 Вт;
- Также нужно приобрести реле типа МКУ (многоконтактное унифицированное).
В схеме, представленной на рисунке, датчиком температуры выступает транзистор VT1, который размещают в стеклянной трубке и укладывают непосредственно на лоток с яйцами. При включении регулятора в сеть, срабатывает реле, его контакты размыкаются и инкубатор обогревается от ламп, которые подключаются к сети 220 Вольт.
При отключении от сети, контакты реле замыкаются и подключают в работу аккумулятор и автомобильные лампы для обогрева. При возобновлении подачи напряжения, реле снова срабатывает и подключает второй парой контактов зарядное устройство для подзаряда аккумулятора. Переменным резистором устанавливается порог требуемой температуры. Особых требований к зарядному устройству нет, можно использовать любое имеющееся в наличии.
Термостат в качестве регулятора
Этот вариант более прост в изготовлении и в то же время весьма надёжен в эксплуатации. Для его изготовления потребуется найти любой термостат от бытовой техники, например, от утюга.
Его нужно определённым образом подготовить к работе. Для этого любым доступным способом наполняют корпус термостата эфиром и хорошо запаивают.
Эфир очень чутко реагирует на малейшее изменение наружной температуры, что приводит к изменению состояния корпуса термостата. Винт, который припаян к корпусу, жёстко связан с контактами. В нужный момент происходит включение или отключение нагревательного элемента. Нужную температуру выставляют при вращении регулировочного винта (под номером 6 на рисунке).
Также предлагаем вам прочитать о разведении индоуток в следующей статье: //6sotok-dom.com/uchastok/ferma/razvedenie-indoutok.html
Обращаем Ваше внимание, что перед закладкой яиц, нужно произвести настройку нужной температуры и прогреть инкубатор. Итак, как видно из описания, изготовить терморегулятор в инкубатор не сложно
Это может выполнить даже школьник, который увлекается радиоэлектроникой. Схема не содержит дефицитных радиокомпонентов. Элементы устанавливают на печатную плату или монтируют навесным монтажом
Итак, как видно из описания, изготовить терморегулятор в инкубатор не сложно. Это может выполнить даже школьник, который увлекается радиоэлектроникой. Схема не содержит дефицитных радиокомпонентов. Элементы устанавливают на печатную плату или монтируют навесным монтажом.
Если самостоятельно изготавливается «электрическая наседка», полезно для увеличения процентов вывода молодняка птицы, предусмотреть устройство для автоматического поворота яиц в инкубаторе.Из этого видео Вы узнаете как сделать терморегулятор для инкубатора своими руками:
Купить или сделать самому
Приобретать в специальном магазине готовый терморегулятор либо сделать его самостоятельно по схеме?
Практически все современные модели инкубаторов оснащены встроенными терморегуляторами. Лишь иногда возникает необходимость приобретать данный прибор отдельно или воспользоваться возможностью сделать прибор для контроля показателей своими силами.
Готовые устройства следят за нужным режимом и подают сигнал, если в работе возникают сбои. Изготовленный кустарным способом по схеме простейший термостат не всегда сможет гарантировать вам 100% точность показаний влажности и температурного режима. Даже если вы осилили сборку инкубатора в домашних условиях, специалисты рекомендуют доверить осуществление контроля параметров изделиям, собранным в заводских условиях.
Во многих самодельных инкубаторах фермеры используют простой градусник. В данном случае нужно постоянно пребывать неподалеку от инкубатора. Терморегулятор позволяет контролировать слаженную работу нагревательных элементов и в случае необходимости автоматически отключается. Требуется только настроить оптимальные параметры, после чего он будет работать автономно.
Приобрести готовый терморегулятор или сделать его дома по схеме – решать вам.