Электрическое сопротивление — электротехническая величина, которая характеризует свойство материала препятствовать протеканию электрического тока. В зависимости от вида материала, сопротивление может стремиться к нулю — быть минимальным (мили/микро омы — проводники, металлы), или быть очень большим (гига омы — изоляция, диэлектрики). Величина обратная электрическому сопротивлению — это проводимость.
Единица измерения электрического сопротивления — Ом. Обозначается буквой R. Зависимость сопротивления от тока и напряжения в замкнутой цепи определяется законом Ома.
Омметр — прибор для прямого измерения сопротивления цепи. В зависимости от диапазона измеряемой величины, подразделяются на гигаомметры (для больших сопротивление — при измерении изоляции), и на микро/милиомметры (для маленьких сопротивлений — при измерении переходных сопротивлений контактов, обмоток двигателей и др.).
Существует большое разнообразие омметров по конструктиву разных производителей, от электромеханических до микроэлектронных. Стоит отметить, что классический омметр измеряет активную часть сопротивления (так называемые омики).
Любое сопротивление (металл или полупроводник) в цепи переменного токаимеет активную и реактивную составляющую. Сумма активного и реактивного сопротивления составляют полное сопротивление цепи переменного тока и вычисляется по формуле:
где, Z — полное сопротивление цепи переменного тока;
R — активное сопротивление цепи переменного тока;
Xc — емкостное реактивное сопротивление цепи переменного тока;
( С- емкость, w — угловая скорость переменного тока)
Xl — индуктивное реактивное сопротивление цепи переменного тока;
( L- индуктивность, w — угловая скорость переменного тока).
Активное сопротивление— это часть полного сопротивления электрической цепи, энергия которого полностью преобразуется в другие виды энергии (механическую, химическую, тепловую). Отличительным свойством активной составляющей — полное потребление всей электроэнергии (в сеть обратно в сеть энергия не возвращается), а реактивное сопротивление возвращает часть энергии обратно в сеть (отрицательное свойство реактивной составляющей).
Содержание
Различные вещества имеют разную проводимость. Мы уже говорили о существовании проводников, полупроводников и диэлектриках. Среди проводников электричества мы выделили металлы — они имеют лучшую проводимость, так как содержат в себе большое количество свободных электронов. Эти заряженные частицы под действием сил электрического поля приходят в движение. Так возникает такое явление, как электрический ток.
Но даже среди металлов можно выделить те, которые лучше проводят ток. Значит, есть и те металлы, которые проводят ток хуже. Как же сравнивать эту способность веществ? Так мы подходим к введению новой характеристики проводников.
Называется эта характеристика «электрическое сопротивление«. В данном уроке мы рассмотрим ее связь с проводимостью различный веществ, узнаем причины ее возникновения и разберемся, от каких других величин и свойств она зависит.
Особенности выбора
Сейчас на рынке представлено большое многообразие устройств от бытовых недорогих моделей, предназначенных для эпизодических измерений, до узкопрофессиональных тестеров, оснащённых специфическими функциями и возможностями. Запутаться в столь широком многообразии устройств несложно. Сориентироваться в выборе помогут следующие критерии:
- Диапазон. Максимальные и минимальное возможные показания сопротивления. Особняком стоят мультиметры с расширенными функциями мегаомметров, которые больше востребованы профессиональными электриками.
- Точность. Большое влияние на показатель имеет заявленная производителем погрешность измерения в определённом интервале температур.
- Длина шкалы. Традиционно мультиметры отображают 4 знака. Боле сложные приборы оснащены расширенной индикацией.
- Выбор диапазона. Автоматическое определение как опция может быть очень полезна при массовом тестировании разнородных компонентов, но эта функция удорожает прибор.
- Температурный коэффициент. Параметр, существенно влияющий на точность измерений. Как правило, большинство приборов калибруется при температуре окружающей среды 20 °C. Устойчивость показаний к изменению температуры существенно влияет на цену мультиметра.
- Скорость измерения. Для бытовых нужд несущественна. Большинство омметров делает приблизительно один замер в секунду, но в некоторых случаях этот параметр может определять выбор.
- Возможность удалённого подключения. Оснащение портами для передачи данных заметно ускоряет некоторые процессы многократных замеров и обработки измерений.
- Прочность, защищённость от влажности и портативность. Определяет условия, при которых тестер будет эксплуатироваться.
Зависимость показаний амперметра и вольтметра от используемого проводника в цепи
Для начала проведем интересный опыт. Соберем электрическую цепь из источника тока, ключа, амперметра и вольтметра. Также мы будем включать в эту цепь проводники из различных материалов. Они закреплены на специальной панели. К этим же проводникам мы будем параллельно подключать вольтметр (рисунок 1).
Проводники у нас обозначены следующим образом: AB — железная проволока, CD — никелиновая проволока, EF — медная проволока.
Эти проводники имеют одинаковую длину и сечение.
Рисунок 1. Зависимость силы тока от используемого в цепи проводника
Сначала подключим в цепь железную проволоку AB. Зафиксируем показания амперметра и вольтметра после замыкания ключа.
Теперь переключимся на никелиновую проволоку CD. Мы заметим, что сила тока в цепи уменьшилась.
Испробуем третий проводник: медную проволоку EF. Теперь сила тока значительно увеличилась.
Вы не забыли, что в нашем опыте был еще и вольтметр? Мы поочередно подключали его к каждому из проводников.
Каждый раз мы получали одинаковое значение напряжения. Оно не изменялось.
Замер
Наиболее известная радиодеталь, обладающая стабильным рабочим сопротивлением — резистор. Этот элемент не имеет индуктивности и емкости, поэтому может без потери снижать выходящее сопротивление для стабильной работы других компонентов цепи.
Для того чтобы проверить сопротивление проводника, используется прибор омметр. Мерить также можно электронным мультиметром, оснащенным функцией омметра.
Далее будет описан процесс измерения на примере обычного резистора.
- Выставить на мультиметре режим омметра. На приборе есть свое обозначение значка ома — это символ «Ω».
- Красный измерительный щуп подключить к контакту резистора.
- Черный измерительный щуп подключить ко второму контакту элемента.
- Полученные на дисплее прибора омы надо сравнить с маркировкой на корпусе детали.
Резисторы получают специальное обозначение на корпусе, равное способности радиодетали проводить электрический ток. При измерении значения не должны сильно отклоняться от эталонных.
Важно! Мерить данный параметр можно только на обесточенной цепи. Перед замером на схеме стоит проверить напряжение на конденсаторах и разрядить их.
Параметр сопротивления можно использовать и для проверки целостности элементов электрической цепи. Для точного определения причины неисправности электрических приборов мастер должен знать рабочее сопротивление устройства или силу тока, при котором оно работает. Если в процессе измерения рабочий параметр увеличился, можно сделать вывод о наличии короткого замыкания в цепи, пригорании контактов или повреждении катушки индуктивности. При значительном снижении параметра увеличится значение силы тока, что станет причиной выгорания конденсаторов, части резисторов, увеличения общей рабочей температуры устройства.
Современные мультиметры имеют функцию «прозвонки» со звуковым оповещением. Этот режим можно легко заменить режимом омметра. При помощи омметра можно мерить целостность жил проводки, определять целостность обмотки электрических двигателей и катушек индуктивности.
Очень часто новички используют параметр электрической проводимости и рабочего напряжения для расчета силы тока для нормального функционирования прибора. Делать подобные расчеты можно только при проектировании, используя формулу: А=В/Ом. Имея уже функциональное устройство расчет может быть неверным, если рабочее сопротивление было завышено/занижено вышедшими из строя элементами цепи.
Зависимость силы тока от свойств проводников
Вы уже знаете, что сила тока зависит от напряжения. Ведь напряжение является характеристикой электрического поля.
Но в нашем опыте напряжение оставалось постоянным. Значит, сила тока имеет еще одну зависимость.
Сила тока в цепи зависит от свойств проводников, включенных в электрическую цепь.
Метода треугольника закона Ома
Закон Ома – очень простой и полезный инструмент для анализа электрических цепей. Он так часто используется при изучении электричества и электроники, что студент должен запомнить его. Если вы не очень хорошо умеете работать с формулами, то для его запоминания существует простой прием, помогающий использовать его для любой величины, зная две других. Сначала расположите буквы E, I и R в виде треугольника следующим образом:
Рисунок 5 – Треугольник закона Ома
Если вы знаете E и I и хотите определить R, просто удалите R с картинки и посмотрите, что осталось:
Рисунок 6 – Закон Ома для определения R
Если вы знаете E и R и хотите определить I, удалите I и посмотрите, что осталось:
Рисунок 7 – Закон Ома для определения I
Наконец, если вы знаете I и R и хотите определить E, удалите E и посмотрите, что осталось:
Рисунок 8 – Закон Ома для определения E
В конце концов, вам придется научиться работать с формулами, чтобы серьезно изучать электричество и электронику, но этот совет может облегчить запоминание ваших первых вычислений. Если вам удобно работать с формулами, всё, что вам нужно сделать, это зафиксировать в памяти E = IR и вывести из нее две другие формулы, когда они вам понадобятся!
Причины электрического сопротивления
В чем же причина сопротивления?
Вспомните урок «Электрический ток в металлах«. Электроны, двигаясь под действием электрического поля, обретают некоторое направление. Но при этом хаотичность их движения сохраняется. Мы еще сравнивали такое движение со стайкой мошкары, которую относит ветром.
Итак, электроны приведены в упорядоченное движение электрическим полем. При этом они взаимодействуют с ионами кристаллической решетки. Что при этом происходит? Упорядоченное движение замедляется. Теперь меньшее число электронов проходит через поперечное сечение проводника за $1 \space с$. Значит, уменьшается сила тока.
Сделаем вывод из наших рассуждений.
Причина сопротивления — это взаимосвязь движущихся электронов с ионами кристаллической решетки.
Логично, что разные проводники будут обладать разными значениями сопротивления. Все дело будет в различиях строения их кристаллической решетки. Кроме того, значение будут иметь длина проводника и площадь его поперечного сечения. Об этом мы поговорим в следующих уроках.
Общие меры предосторожности
Как и с любыми другими электрическими приборами, при определении сопротивления мультиметром, существуют некоторые меры предосторожности. Соблюдение их позволяет защитить устройство от повреждений и повысить точность результатов. Несколько простых правил, которые следует помнить во время работ с мультиметром:
- Тестировать только отсоединённые от цепи компоненты. На результаты тестирования включённых в схему элементы всегда будут оказывать влияние все остальные объекты цепи.
- Убедиться, что тестируемая цепь выключена. Иногда бывают обстоятельства, когда замеры отсоединённых компонентов невозможны. В этом случае очень важно обесточить схему. Кроме того, что любой ток может сделать недействительными любые показания, довольно высокое напряжение способно привести к повреждениям мультиметров.
- Обеспечить разрядку конденсаторам в цепи. Без этого условия измерения будут гарантированно искажены.
- Помнить, что диоды в цепи вызывают разбег в показаниях при изменении направления замеров.
- Учитывать, что утечки тока через пальцы в некоторых случаях способны исказить показания. При измерении больших сопротивлений этот эффект становится более заметным.
Большинство приборов способно удовлетворить самые разнообразные нужды домашнего мастера. Покупка даже недорогого мультиметра вряд ли разочарует непрофессионала при интенсивном использовании.
Современные приборы — это надёжные и проверенные годами и десятилетиями конструкции и алгоритмы обработки данных.
Упражнения
Упражнение №1
Начертите схему цепи, изображённой на рисунке 1, и объясните опыт, проведённый по данному рисунку.
Схема электрической цепи изображена на рисунке 2. Проводник обозначен прямоугольником.
Рисунок 2. Схема электрической цепи для проведенного опыта
В ходе этого опыта используют различные проводники. При этом фиксируют значения приборов. Сила тока изменяется в зависимости от того, какой проводник включен в цепь. Напряжение же на концах разных проводников все время остается постоянным.
Этот опыт доказывает связь силы тока и свойства проводника, называемого электрическим сопротивлением.
Упражнение №2
Выразите в омах значения следующих сопротивлений: $100 \space мОм$; $0.7 \space кОм$; $20 \space МОм$.
Дано: $I_1 = 100 \space мОм$ $I_2 = 0.7 \space кОм$ $I_3 = 20 \space МОм$
Показать решение и ответ
Скрыть
Решение:
$I_1 = 100 \space мОм = 100 \cdot 0.001 \space Ом = 0.1 \space Ом$, $I_2 = 0.7 \space кОм = 0.7 \cdot 1000 \space Ом = 700 \space Ом$, $I_3 = 20 \space МОм = 20 \cdot 1 \space 000 \space 000 \space Ом = 20 \space 000 \space 000 \space Ом$.
Ответ: $I_1 = 0.1 \space Ом$, $I_2 = 700 \space Ом$, $I_3 = 20 \space 000 \space 000 \space Ом$.
Кратные и дольные единицы
Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.
Кратные | Дольные | ||||||
величина | название | обозначение | величина | название | обозначение | ||
101 Ом | декаом | даОм | daΩ | 10−1 Ом | дециом | дОм | dΩ |
102 Ом | гектоом | гОм | hΩ | 10−2 Ом | сантиом | сОм | cΩ |
103 Ом | килоом | кОм | kΩ | 10−3 Ом | миллиом | мОм | mΩ |
106 Ом | мегаом | МОм | MΩ | 10−6 Ом | микроом | мкОм | µΩ |
109 Ом | гигаом | ГОм | GΩ | 10−9 Ом | наноом | нОм | nΩ |
1012 Ом | тераом | ТОм | TΩ | 10−12 Ом | пикоом | пОм | pΩ |
1015 Ом | петаом | ПОм | PΩ | 10−15 Ом | фемтоом | фОм | fΩ |
1018 Ом | эксаом | ЭОм | EΩ | 10−18 Ом | аттоом | аОм | aΩ |
1021 Ом | зеттаом | ЗОм | ZΩ | 10−21 Ом | зептоом | зОм | zΩ |
1024 Ом | йоттаом | ИОм | YΩ | 10−24 Ом | йоктоом | иОм | yΩ |
применять не рекомендуется не применяются или редко применяются на практике |
Меры безопасности при измерении
Даже когда возникла необходимость в бытовых условиях провести измерения сопротивления изоляции провода, перед использованием мегаомметра нужно ознакомиться с требованиями по безопасности. Главные правила:
- Удерживать щупы лишь за изолированный и ограниченный упорами участок.
- До подсоединения изделия отключается напряжение, нужно удостовериться, что рядом нет людей (вдоль всего измеряемого участка, когда речь о проводах).
- До подсоединения щупов снимается остаточное напряжение посредством подключения переносного заземления. Отключается тогда, когда щупы установлены.
- После каждого замера снимается со щупов остаточное напряжение, соединяются оголенные участки.
- По завершении замеров к жиле подключается переносное заземление, снимается остаточный заряд.
- Работы проводятся в перчатках.
Правила несложные, однако от них будет зависеть безопасность работника.
Требования к безопасности
Чтобы оценить функциональность электропровода, проводки, требуется замерять сопротивление изоляционного материала. В этих целях используются специальный измерительные приборы. Они будут подавать в измеряемую электроцепь напряжение, после чего на мониторе будут выданы данные.
Источник